These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9697300)
21. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry. Eftink MR; Jameson DM Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389 [TBL] [Abstract][Full Text] [Related]
22. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins. Phillips SR; Wilson LJ; Borkman RF Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547 [TBL] [Abstract][Full Text] [Related]
23. Temperature study of indole, tryptophan and N-acetyl-L-tryptophanamide (NATA) triplet-state quenching by iodide in aqueous solution. Kowalska-Baron A; Gałęcki K; Wysocki S Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():42-8. PubMed ID: 23602958 [TBL] [Abstract][Full Text] [Related]
24. Distance-Dependent Fluorescence Quenching of p-Bis[2-(5-phenyloxazolyl)]benzene by Various Quenchers. Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR J Phys Chem; 1996 Nov; 100(47):18592-18602. PubMed ID: 34032396 [TBL] [Abstract][Full Text] [Related]
25. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin. Eftink MR; Hagaman KA Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574 [TBL] [Abstract][Full Text] [Related]
26. Time-resolved fluorescence study of a calcium-induced conformational change in prothrombin fragment 1. Hof M; Fleming GR; Fidler V Proteins; 1996 Apr; 24(4):485-94. PubMed ID: 9162948 [TBL] [Abstract][Full Text] [Related]
27. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies. Maity H; Jarori GK Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274 [TBL] [Abstract][Full Text] [Related]
28. Fluorescence lifetime and solute quenching studies with the single tryptophan containing protein parvalbumin from codfish. Eftink MR; Wasylewski Z Biochemistry; 1989 Jan; 28(1):382-91. PubMed ID: 2706263 [TBL] [Abstract][Full Text] [Related]
29. Tryptophan fluorescence in electron-transfer flavoprotein:ubiquinone oxidoreductase: fluorescence quenching by a brominated pseudosubstrate. Watmough NJ; Loehr JP; Drake SK; Frerman FE Biochemistry; 1991 Feb; 30(5):1317-23. PubMed ID: 1991113 [TBL] [Abstract][Full Text] [Related]
30. Fluorescence study of Escherichia coli cyclic AMP receptor protein. Wasylewski M; Małecki J; Wasylewski Z J Protein Chem; 1995 Jul; 14(5):299-308. PubMed ID: 8590598 [TBL] [Abstract][Full Text] [Related]
31. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics. Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873 [TBL] [Abstract][Full Text] [Related]
32. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents. Kadyan A; Juneja S; Pandey S J Phys Chem B; 2019 Sep; 123(35):7578-7587. PubMed ID: 31402653 [TBL] [Abstract][Full Text] [Related]
33. Quenching of intrinsic fluorescence of yeast cytochrome c peroxidase by covalently- and noncovalently-bound quenchers. Fox T; Ferreira-Rajabi L; Hill BC; English AM Biochemistry; 1993 Jul; 32(27):6938-43. PubMed ID: 8392866 [TBL] [Abstract][Full Text] [Related]
34. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase. Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558 [TBL] [Abstract][Full Text] [Related]
35. A study of colchicine tubulin complex by donor quenching of fluorescence energy transfer. Bhattacharyya A; Bhattacharyya B; Roy S Eur J Biochem; 1993 Sep; 216(3):757-61. PubMed ID: 8404894 [TBL] [Abstract][Full Text] [Related]
36. Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay. Xu J; Knutson JR J Phys Chem B; 2009 Sep; 113(35):12084-9. PubMed ID: 19708715 [TBL] [Abstract][Full Text] [Related]
37. Protein phosphorescence quenching: distinction between quencher penetration and external quenching mechanisms. Strambini GB; Gonnelli M J Phys Chem B; 2010 Jul; 114(29):9691-7. PubMed ID: 20597520 [TBL] [Abstract][Full Text] [Related]
38. The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide. Davis DM; McLoskey D; Birch DJ; Gellert PR; Kittlety RS; Swart RM Biophys Chem; 1996 Jun; 60(3):63-77. PubMed ID: 8679927 [TBL] [Abstract][Full Text] [Related]
39. Inhibition of substrate binding to the adrenal cytochrome P450C-21 by acrylamide and its implications for solvent accessibility of the binding site in the microsomes. Narasimhulu S Biochemistry; 1991 Sep; 30(38):9319-27. PubMed ID: 1892836 [TBL] [Abstract][Full Text] [Related]
40. Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers. Moro F; Goñi FM; Urbaneja MA FEBS Lett; 1993 Sep; 330(2):129-32. PubMed ID: 8365482 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]