BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9697317)

  • 1. Size characterization of liposomes by flow field-flow fractionation and photon correlation spectroscopy. Effect of ionic strength and pH of carrier solutions.
    Moon MH; Park I; Kim Y
    J Chromatogr A; 1998 Jul; 813(1):91-100. PubMed ID: 9697317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size distribution of liposomes by flow field-flow fractionation.
    Moon MH; Giddings JC
    J Pharm Biomed Anal; 1993 Oct; 11(10):911-20. PubMed ID: 8305595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent electrophoretic migration and separation of liposomes by capillary zone electrophoresis in electrolyte solutions of various ionic strengths.
    Radko SP; Stastna M; Chrambach A
    Anal Chem; 2000 Dec; 72(24):5955-60. PubMed ID: 11140762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid.
    Hupfeld S; Moen HH; Ausbacher D; Haas H; Brandl M
    Chem Phys Lipids; 2010 Feb; 163(2):141-7. PubMed ID: 19900428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.
    Arifin DR; Palmer AF
    Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of mean diameter and particle size distribution of acrylate latex using flow field-flow fractionation, photon correlation spectroscopy, and electron microscopy.
    Lee S; Rao SP; Moon MH; Giddings JC
    Anal Chem; 1996 May; 68(9):1545-9. PubMed ID: 21619120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction for particle-wall interactions in the separation of colloids by flow field-flow fractionation.
    Qing D; Schimpf ME
    Anal Chem; 2002 Jun; 74(11):2478-85. PubMed ID: 12069226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles.
    Yohannes G; Jussila M; Hartonen K; Riekkola ML
    J Chromatogr A; 2011 Jul; 1218(27):4104-16. PubMed ID: 21292269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the size distribution of liposomes by SEC fractionation, and PCS analysis and enzymatic assay of lipid content.
    Ingebrigtsen L; Brandl M
    AAPS PharmSciTech; 2002; 3(2):E7. PubMed ID: 12916944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering.
    Korgel BA; van Zanten JH; Monbouquette HG
    Biophys J; 1998 Jun; 74(6):3264-72. PubMed ID: 9635780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydispersity of liposome preparations as a likely source of peak width in capillary zone electrophoresis.
    Radko SP; Stastna M; Chrambach A
    J Chromatogr B Biomed Sci Appl; 2001 Sep; 761(1):69-75. PubMed ID: 11585133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow-fractionation.
    Hupfeld S; Holsaeter AM; Skar M; Frantzen CB; Brandl M
    J Nanosci Nanotechnol; 2006; 6(9-10):3025-31. PubMed ID: 17048514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.
    Astefanei A; Kok WT; Bäuerlein P; Núñez O; Galceran MT; de Voogt P; Schoenmakers PJ
    J Chromatogr A; 2015 Aug; 1408():197-206. PubMed ID: 26169905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes.
    Ruozi B; Tosi G; Forni F; Fresta M; Vandelli MA
    Eur J Pharm Sci; 2005 May; 25(1):81-9. PubMed ID: 15854804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size determination of diesel soot particles using flow and sedimentation field-flow fractionation.
    Kim WS; Park YH; Shin JY; Lee DW; Lee S
    Anal Chem; 1999 Aug; 71(15):3265-72. PubMed ID: 21662915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size analysis of industrial carbon blacks by sedimentation and flow field-flow fractionation.
    Park YH; Kim WS; Lee DW
    Anal Bioanal Chem; 2003 Feb; 375(4):489-95. PubMed ID: 12610699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of submicron MCT o/w emulsions using sedimentation field-flow fractionation (FFF) with power field programming.
    Levin S; Klausner E; Muchtar S
    J Pharm Biomed Anal; 1994 Sep; 12(9):1115-21. PubMed ID: 7803561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodology of measurement of ionic strength based on field-flow fractionation.
    Rah K; Choi J; Lee S
    J Chromatogr A; 2021 Nov; 1658():462591. PubMed ID: 34656839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloid characterization by sedimentation field-flow fractionation:  correction for particle-wall interaction.
    Williams PS; Xu Y; Reschiglian P; Giddings JC
    Anal Chem; 1997 Feb; 69(3):349-60. PubMed ID: 21639187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.