BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 9697343)

  • 21. Inward rectifier produced by Xenopus oocytes injected with mRNA extracted from carp olfactory epithelium.
    Yoshii K; Kurihara K
    Synapse; 1989; 3(3):234-8. PubMed ID: 2541514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and characterization of a canine hippocampal inwardly rectifying K+ current in Xenopus oocytes.
    Cui J; Mandel G; DiFrancesco D; Kline RP; Pennefather P; Datyner NB; Haspel HC; Cohen IS
    J Physiol; 1992 Nov; 457():229-46. PubMed ID: 1338458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel crystallization method for visualizing the membrane localization of potassium channels.
    Lopatin AN; Makhina EN; Nichols CG
    Biophys J; 1998 May; 74(5):2159-70. PubMed ID: 9591643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field.
    Marten I; Hoshi T
    Biophys J; 1998 Jun; 74(6):2953-62. PubMed ID: 9635749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation.
    Zou A; Xu QP; Sanguinetti MC
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):129-37. PubMed ID: 9547387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Study on the methodology of potassium channel expression in Xenopus oocytes by messenger RNA from rat cochlear nucleus].
    Yang W; Jiang S; Yang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Feb; 33(1):4-6. PubMed ID: 11498889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary structure and functional properties of an epithelial K channel.
    Zhou H; Tate SS; Palmer LG
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C809-24. PubMed ID: 8166245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel.
    Philipson LH; Hice RE; Schaefer K; LaMendola J; Bell GI; Nelson DJ; Steiner DF
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):53-7. PubMed ID: 1986382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of Kir6.2-SUR1 currents, in the absence and presence of sodium azide, to the K(ATP) channel inhibitors, ciclazindol and englitazone.
    McKay NG; Kinsella JM; Campbell CM; Ashford ML
    Br J Pharmacol; 2000 Jun; 130(4):857-66. PubMed ID: 10864893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of isosorbiddinitrate on exogenously expressed slowly activating K+ channels and endogenous K+ channels in Xenopus oocytes.
    Busch AE; Kopp HG; Waldegger S; Samarzija I; Süssbrich H; Raber G; Kunzelmann K; Ruppersberg JP; Lang F
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):735-41. PubMed ID: 8815207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes.
    Segal A; Awayda MS; Eggermont J; Van Driessche W; Weber WM
    Pflugers Arch; 2002 Mar; 443(5-6):882-91. PubMed ID: 11889589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
    Gregerson KA; Flagg TP; O'Neill TJ; Anderson M; Lauring O; Horel JS; Welling PA
    Endocrinology; 2001 Jul; 142(7):2820-32. PubMed ID: 11416001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of a potassium conductance by extracellular alkaline pH in oocytes of Xenopus laevis.
    Yoshida S; Yoshimura M; Taniyama K
    Jpn J Pharmacol; 2001 Nov; 87(3):202-7. PubMed ID: 11885969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.
    Derst C; Hirsch JR; Preisig-Müller R; Wischmeyer E; Karschin A; Döring F; Thomzig A; Veh RW; Schlatter E; Kummer W; Daut J
    Kidney Int; 2001 Jun; 59(6):2197-205. PubMed ID: 11380822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes.
    Wang S; Liu S; Morales MJ; Strauss HC; Rasmusson RL
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):45-60. PubMed ID: 9234196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Barium ion blockade on an inward rectifying potassium current in oocytes of the frog Xenopus laevis].
    Gamboa R; Martínez M; Cumming E
    Arch Inst Cardiol Mex; 1998; 68(3):206-13. PubMed ID: 9810341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of K channels in Xenopus laevis oocytes injected with poly(A+) mRNA from the insulin-secreting beta-cell line, HIT T15.
    Ashcroft FM; Ashcroft SJ; Berggren PO; Betzholz C; Rorsman P; Trube G; Welsh M
    FEBS Lett; 1988 Nov; 239(2):185-9. PubMed ID: 2903072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.