BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9697416)

  • 1. GTPase-activating proteins: helping hands to complement an active site.
    Scheffzek K; Ahmadian MR; Wittinghofer A
    Trends Biochem Sci; 1998 Jul; 23(7):257-62. PubMed ID: 9697416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GTPase-activating proteins and their complexes.
    Gamblin SJ; Smerdon SJ
    Curr Opin Struct Biol; 1998 Apr; 8(2):195-201. PubMed ID: 9631293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein.
    Leonard DA; Lin R; Cerione RA; Manor D
    J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions.
    Maekawa M; Li S; Iwamatsu A; Morishita T; Yokota K; Imai Y; Kohsaka S; Nakamura S; Hattori S
    Mol Cell Biol; 1994 Oct; 14(10):6879-85. PubMed ID: 7935405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins.
    Mittal R; Ahmadian MR; Goody RS; Wittinghofer A
    Science; 1996 Jul; 273(5271):115-7. PubMed ID: 8658179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
    Scheffzek K; Ahmadian MR; Kabsch W; Wiesmüller L; Lautwein A; Schmitz F; Wittinghofer A
    Science; 1997 Jul; 277(5324):333-8. PubMed ID: 9219684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the GTPase-activating domain from p50rhoGAP.
    Barrett T; Xiao B; Dodson EJ; Dodson G; Ludbrook SB; Nurmahomed K; Gamblin SJ; Musacchio A; Smerdon SJ; Eccleston JF
    Nature; 1997 Jan; 385(6615):458-61. PubMed ID: 9009196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.
    Scheffzek K; Lautwein A; Kabsch W; Ahmadian MR; Wittinghofer A
    Nature; 1996 Dec; 384(6609):591-6. PubMed ID: 8955277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity.
    Zhu J; Reynet C; Caldwell JS; Kahn CR
    J Biol Chem; 1995 Mar; 270(9):4805-12. PubMed ID: 7876254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.
    Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA
    Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. rho GAP of 28 kDa (GAP2), but not of 190 kDa (p190), requires Asp65 and Asp67 of rho GTPase for its activation.
    Morii N; Kumagai N; Nur-E-Kamal MS; Narumiya S; Maruta H
    J Biol Chem; 1993 Dec; 268(36):27160-3. PubMed ID: 7903304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis.
    Goldberg J
    Cell; 1999 Mar; 96(6):893-902. PubMed ID: 10102276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras.
    Schweins T; Geyer M; Kalbitzer HR; Wittinghofer A; Warshel A
    Biochemistry; 1996 Nov; 35(45):14225-31. PubMed ID: 8916907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and N-terminal sequence of the p21rho GTPase-activating protein, rho GAP.
    Garrett MD; Major GN; Totty N; Hall A
    Biochem J; 1991 Jun; 276 ( Pt 3)(Pt 3):833-6. PubMed ID: 1905930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Gln61 and Glu63 of Ras GTPases in their activation by NF1 and Ras GAP.
    Nur-E-Kamal MS; Maruta H
    Mol Biol Cell; 1992 Dec; 3(12):1437-42. PubMed ID: 1362901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras.
    Ahmadian MR; Stege P; Scheffzek K; Wittinghofer A
    Nat Struct Biol; 1997 Sep; 4(9):686-9. PubMed ID: 9302992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42.
    Manser E; Leung T; Salihuddin H; Tan L; Lim L
    Nature; 1993 May; 363(6427):364-7. PubMed ID: 8497321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescently labelled guanine nucleotide binding proteins to analyse elementary steps of GAP-catalysed reactions.
    Kraemer A; Brinkmann T; Plettner I; Goody R; Wittinghofer A
    J Mol Biol; 2002 Dec; 324(4):763-74. PubMed ID: 12460576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases.
    Albert S; Will E; Gallwitz D
    EMBO J; 1999 Oct; 18(19):5216-25. PubMed ID: 10508155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.