These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 9697776)
1. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. White A; Ding X; vanderSpek JC; Murphy JR; Ringe D Nature; 1998 Jul; 394(6692):502-6. PubMed ID: 9697776 [TBL] [Abstract][Full Text] [Related]
2. Role of the N-terminal helix in the metal ion-induced activation of the diphtheria toxin repressor DtxR. D'Aquino JA; Lattimer JR; Denninger A; D'Aquino KE; Ringe D Biochemistry; 2007 Oct; 46(42):11761-70. PubMed ID: 17902703 [TBL] [Abstract][Full Text] [Related]
3. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K). D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. Pohl E; Holmes RK; Hol WG J Mol Biol; 1999 Sep; 292(3):653-67. PubMed ID: 10497029 [TBL] [Abstract][Full Text] [Related]
5. [Point mutations in tox promoter/operator and diphtheria toxin repressor (DTXR) gene associated with the level of toxin production by Corynebacterium diphtheriae strains isolated in Belarus]. Kolodkina VL; Titov LP; Sharapa TN; Drozhzhina ON Mol Gen Mikrobiol Virusol; 2007; (1):22-9. PubMed ID: 17354605 [TBL] [Abstract][Full Text] [Related]
6. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Schiering N; Tao X; Zeng H; Murphy JR; Petsko GA; Ringe D Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9843-50. PubMed ID: 7568230 [TBL] [Abstract][Full Text] [Related]
7. Crystallization and preliminary X-ray studies of the diphtheria Tox repressor from Corynebacterium diphtheriae. Schiering N; Tao X; Murphy JR; Petsko GA; Ringe D J Mol Biol; 1994 Dec; 244(5):654-6. PubMed ID: 7990147 [TBL] [Abstract][Full Text] [Related]
8. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals. Rangachari V; Marin V; Bienkiewicz EA; Semavina M; Guerrero L; Love JF; Murphy JR; Logan TM Biochemistry; 2005 Apr; 44(15):5672-82. PubMed ID: 15823025 [TBL] [Abstract][Full Text] [Related]
9. Specific binding of the diphtheria tox regulatory element DtxR to the tox operator requires divalent heavy metal ions and a 9-base-pair interrupted palindromic sequence. Tao X; Boyd J; Murphy JR Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5897-901. PubMed ID: 1631071 [TBL] [Abstract][Full Text] [Related]
10. Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis. Ding X; Zeng H; Schiering N; Ringe D; Murphy JR Nat Struct Biol; 1996 Apr; 3(4):382-7. PubMed ID: 8599765 [TBL] [Abstract][Full Text] [Related]
11. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor. Qiu X; Pohl E; Holmes RK; Hol WG Biochemistry; 1996 Sep; 35(38):12292-302. PubMed ID: 8823163 [TBL] [Abstract][Full Text] [Related]
12. Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Chen CS; White A; Love J; Murphy JR; Ringe D Biochemistry; 2000 Aug; 39(34):10397-407. PubMed ID: 10956029 [TBL] [Abstract][Full Text] [Related]
13. Biology and molecular epidemiology of diphtheria toxin and the tox gene. Holmes RK J Infect Dis; 2000 Feb; 181 Suppl 1():S156-67. PubMed ID: 10657208 [TBL] [Abstract][Full Text] [Related]
14. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Schmitt MP; Holmes RK Mol Microbiol; 1993 Jul; 9(1):173-81. PubMed ID: 8412663 [TBL] [Abstract][Full Text] [Related]
15. Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. Gonzalez de Peredo A; Saint-Pierre C; Latour JM; Michaud-Soret I; Forest E J Mol Biol; 2001 Jun; 310(1):83-91. PubMed ID: 11419938 [TBL] [Abstract][Full Text] [Related]
16. A closer view of the conformation of the Lac repressor bound to operator. Bell CE; Lewis M Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279 [TBL] [Abstract][Full Text] [Related]
17. Iron, DtxR, and the regulation of diphtheria toxin expression. Tao X; Schiering N; Zeng HY; Ringe D; Murphy JR Mol Microbiol; 1994 Oct; 14(2):191-7. PubMed ID: 7830565 [TBL] [Abstract][Full Text] [Related]
18. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Spiering MM; Ringe D; Murphy JR; Marletta MA Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3808-13. PubMed ID: 12655054 [TBL] [Abstract][Full Text] [Related]
19. Prediction of DtxR regulon: identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae. Yellaboina S; Ranjan S; Chakhaiyar P; Hasnain SE; Ranjan A BMC Microbiol; 2004 Sep; 4():38. PubMed ID: 15447793 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Navarro-Avilés G; Jiménez MA; Pérez-Marín MC; González C; Rico M; Murillo FJ; Elías-Arnanz M; Padmanabhan S Mol Microbiol; 2007 Feb; 63(4):980-94. PubMed ID: 17233828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]