These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9698263)

  • 21. Evaluation of Household Bleach as an Ovicide for the Control of Aedes aegypti.
    Mackay AJ; Amador M; Felix G; Acevedo V; Barrera R
    J Am Mosq Control Assoc; 2015 Mar; 31(1):77-84. PubMed ID: 25843179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Location, seasonal, and functional characteristics of water holding containers with juvenile and pupal Aedes aegypti in Southern Taiwan: A cross-sectional study using hurdle model analyses.
    Lin CH; Schiøler KL; Ekstrøm CT; Konradsen F
    PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006882. PubMed ID: 30321168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of container type, behavioural, and ecological factors in Aedes pupal production in Dhaka, Bangladesh: An application of zero-inflated negative binomial model.
    Islam S; Haque CE; Hossain S; Rochon K
    Acta Trop; 2019 May; 193():50-59. PubMed ID: 30790554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Informed community mobilization for dengue prevention in households with and without a regular water supply: Secondary analysis from the Camino Verde trial in Nicaragua.
    Cárcamo A; Arosteguí J; Coloma J; Harris E; Ledogar RJ; Andersson N
    BMC Public Health; 2017 May; 17(Suppl 1):395. PubMed ID: 28699544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the pupal/demographic-survey methodology to identify the key container habitats of Aedes aegypti (L.) in Malindi district, Kenya.
    Midega JT; Nzovu J; Kahindi S; Sang RC; Mbogo C
    Ann Trop Med Parasitol; 2006 Apr; 100 Suppl 1():S61-S72. PubMed ID: 16630392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors favoring houseplant container infestation with Aedes aegypti larvae in Marília, São Paulo, Brazil.
    Macoris ML; Mazine CA; Andrighetti MT; Yasumaro S; Silva ME; Nelson MJ; Winch PJ
    Rev Panam Salud Publica; 1997 Apr; 1(4):280-6. PubMed ID: 9149524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficacy of Australian quarantine procedures against the mosquito Aedes aegypti.
    Ritchie SA
    J Am Mosq Control Assoc; 2001 Jun; 17(2):114-7. PubMed ID: 11480817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers.
    Vezzani D; Albicócco AP
    Med Vet Entomol; 2009 Mar; 23(1):78-84. PubMed ID: 19239617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The design of a community-based health education intervention for the control of Aedes aegypti.
    Lloyd LS; Winch P; Ortega-Canto J; Kendall C
    Am J Trop Med Hyg; 1994 Apr; 50(4):401-11. PubMed ID: 8166346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Looking over the Backyard Fence": Householders and Mosquito Control.
    Mainali S; Lamichhane RS; Clark K; Beatty S; Fatouros M; Neville P; Oosthuizen J
    Int J Environ Res Public Health; 2017 Mar; 14(3):. PubMed ID: 28257079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does the monomolecular film aquatain mosquito formula provide effective control of container-breeding mosquitoes in Australia?
    Webb CE; Russell RC
    J Am Mosq Control Assoc; 2012 Mar; 28(1):53-8. PubMed ID: 22533087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of socio-demographic characteristics and household water management on Aedes aegypti production in suburban and rural villages in Laos and Thailand.
    Vannavong N; Seidu R; Stenström TA; Dada N; Overgaard HJ
    Parasit Vectors; 2017 Apr; 10(1):170. PubMed ID: 28376893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coverage and beliefs about temephos application for control of dengue vectors and impact of a community-based prevention intervention: secondary analysis from the Camino Verde trial in Mexico.
    Legorreta-Soberanis J; Paredes-Solís S; Morales-Pérez A; Nava-Aguilera E; de Los Santos FRS; Sánchez-Gervacio BM; Ledogar RJ; Cockcroft A; Andersson N
    BMC Public Health; 2017 May; 17(Suppl 1):426. PubMed ID: 28699554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insecticidal effect of aliphatic alcohols against aquatic stages of Aedes mosquitoes.
    Sinniah B
    Trans R Soc Trop Med Hyg; 1983; 77(1):35-8. PubMed ID: 6683011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of Print Education at Reducing Urban Mosquito Infestation through Improved Resident-Based Management.
    Bodner D; LaDeau SL; Biehler D; Kirchoff N; Leisnham PT
    PLoS One; 2016; 11(5):e0155011. PubMed ID: 27171195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of the pupal/demographic-survey technique to identify the epidemiologically important types of containers producing Aedes aegypti (L.) in a dengue-endemic area of Venezuela.
    Lenhart AE; Castillo CE; Oviedo M; Villegas E
    Ann Trop Med Parasitol; 2006 Apr; 100 Suppl 1():S53-S59. PubMed ID: 16630391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An inexpensive intervention for the control of larval Aedes aegypti assessed by an improved method of surveillance and analysis.
    Romero-Vivas CM; Wheeler JG; Falconar AK
    J Am Mosq Control Assoc; 2002 Mar; 18(1):40-6. PubMed ID: 11998929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae).
    Reegan AD; Gandhi MR; Paulraj MG; Balakrishna K; Ignacimuthu S
    Acta Trop; 2014 Nov; 139():67-76. PubMed ID: 25019220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of the pupal/demographic-survey methodology in an area of Havana, Cuba, with low densities of Aedes aegypti (L.).
    Bisset JA; Marquetti MC; Suárez S; Rodríguez MM; Padmanabha H
    Ann Trop Med Parasitol; 2006 Apr; 100 Suppl 1():S45-S51. PubMed ID: 16630390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The single water-surface sweep estimation method accurately estimates very low (n = 4) to low-moderate (n = 25-100) and high (n > 100) Aedes aegypti (Diptera: Culicidae) pupae numbers in large water containers up to 13 times faster than the exhaustive sweep and total count method and without any sediment contamination.
    Romero-Vivas CM; Llinás H; Falconar AK
    Trop Med Int Health; 2015 Mar; 20(3):326-33. PubMed ID: 25418067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.