These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 9698380)

  • 1. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that chemical modification of a positively charged residue at position 189 causes the loss of catalytic activity of iron-containing and manganese-containing superoxide dismutases.
    Chan VW; Bjerrum MJ; Borders CL
    Arch Biochem Biophys; 1990 May; 279(1):195-201. PubMed ID: 2186704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The positive charge at position 189 is essential for the catalytic activity of iron- and manganese-containing superoxide dismutases.
    Borders CL; Chain VW; Bjerrum MJ
    Free Radic Res Commun; 1991; 12-13 Pt 1():279-85. PubMed ID: 2071034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Tyr41 and His155 in the functional properties of superoxide dismutase from the archaeon Sulfolobus solfataricus.
    Gogliettino MA; Tanfani F; Sciré A; Ursby T; Adinolfi BS; Cacciamani T; De Vendittis E
    Biochemistry; 2004 Mar; 43(8):2199-208. PubMed ID: 14979716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rat mitochondrial manganese superoxide dismutase: amino acid positions involved in covalent modifications, activity, and heat stability.
    Castellano I; Cecere F; De Vendittis A; Cotugno R; Chambery A; Di Maro A; Michniewicz A; Parlato G; Masullo M; Avvedimento EV; De Vendittis E; Ruocco MR
    Biopolymers; 2009 Dec; 91(12):1215-26. PubMed ID: 19384983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.
    Stoughton DM; Zapata G; Picone R; Vann WF
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and kinetic study of differences between human and Escherichia coli manganese superoxide dismutases.
    Zheng J; Domsic JF; Cabelli D; McKenna R; Silverman DN
    Biochemistry; 2007 Dec; 46(51):14830-7. PubMed ID: 18044968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: insertion of valine C gamma into the substrate access channel.
    Hearn AS; Stroupe ME; Cabelli DE; Ramilo CA; Luba JP; Tainer JA; Nick HS; Silverman DN
    Biochemistry; 2003 Mar; 42(10):2781-9. PubMed ID: 12627943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.
    Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity.
    Pohjanjoki P; Lahti R; Goldman A; Cooperman BS
    Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual stability of manganese superoxide dismutase from a new species, Tatumella ptyseos ct: its gene structure, expression, and enzyme properties.
    Ken CF; Lee CC; Duan KJ; Lin CT
    Protein Expr Purif; 2005 Mar; 40(1):42-50. PubMed ID: 15721770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conserved residue tyrosine 34 is essential for maximal activity of iron-superoxide dismutase from Escherichia coli.
    Hunter T; Ikebukuro K; Bannister WH; Bannister JV; Hunter GJ
    Biochemistry; 1997 Apr; 36(16):4925-33. PubMed ID: 9125514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34.
    Guan Y; Hickey MJ; Borgstahl GE; Hallewell RA; Lepock JR; O'Connor D; Hsieh Y; Nick HS; Silverman DN; Tainer JA
    Biochemistry; 1998 Apr; 37(14):4722-30. PubMed ID: 9537987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly stable Cu/Zn superoxide dismutase from Withania somnifera plant: gene cloning, expression and characterization of the recombinant protein.
    Madanala R; Gupta V; Deeba F; Upadhyay SK; Pandey V; Singh PK; Tuli R
    Biotechnol Lett; 2011 Oct; 33(10):2057-63. PubMed ID: 21695487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site.
    Yamakura F; Sugio S; Hiraoka BY; Ohmori D; Yokota T
    Biochemistry; 2003 Sep; 42(36):10790-9. PubMed ID: 12962504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine residue 384 at the catalytic center is important for branching enzyme II from maize endosperm.
    Libessart N; Preiss J
    Arch Biochem Biophys; 1998 Dec; 360(1):135-41. PubMed ID: 9826438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostability of manganese- and iron-superoxide dismutases from Escherichia coli is determined by the characteristic position of a glutamine residue.
    Hunter T; Bannister JV; Hunter GJ
    Eur J Biochem; 2002 Nov; 269(21):5137-48. PubMed ID: 12392545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity.
    Edwards RA; Whittaker MM; Whittaker JW; Baker EN; Jameson GB
    Biochemistry; 2001 Apr; 40(15):4622-32. PubMed ID: 11294629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.