These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
487 related articles for article (PubMed ID: 9698380)
21. The hyper-thermostable Fe-superoxide dismutase from the Archaeon Acidianus ambivalens: characterization, recombinant expression, crystallization and effects of metal exchange. Kardinahl S; Anemüller S; Schäfer G Biol Chem; 2000 Nov; 381(11):1089-101. PubMed ID: 11154067 [TBL] [Abstract][Full Text] [Related]
22. Effects of substitution of tryptophan 412 in the substrate activation pathway of yeast pyruvate decarboxylase. Li H; Jordan F Biochemistry; 1999 Aug; 38(31):10004-12. PubMed ID: 10433707 [TBL] [Abstract][Full Text] [Related]
23. Characterization of Fe/Mn-superoxide dismutase from diatom Thallassiosira weissflogii: cloning, expression, and property. Ken CF; Hsiung TM; Huang ZX; Juang RH; Lin CT J Agric Food Chem; 2005 Mar; 53(5):1470-4. PubMed ID: 15740026 [TBL] [Abstract][Full Text] [Related]
24. Mutagenesis of a proton linkage pathway in Escherichia coli manganese superoxide dismutase. Whittaker MM; Whittaker JW Biochemistry; 1997 Jul; 36(29):8923-31. PubMed ID: 9220980 [TBL] [Abstract][Full Text] [Related]
25. A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties. Liau YJ; Wen L; Shaw JF; Lin CT J Biotechnol; 2007 Aug; 131(1):84-91. PubMed ID: 17604867 [TBL] [Abstract][Full Text] [Related]
26. Molecular cloning and characterization of Mn-superoxide dismutase from disk abalone (Haliotis discus discus). Ekanayake PM; Kang HS; De Zyosa M; Jee Y; Lee YH; Lee J Comp Biochem Physiol B Biochem Mol Biol; 2006; 145(3-4):318-24. PubMed ID: 17020816 [TBL] [Abstract][Full Text] [Related]
27. Biochemical characterization of a cambialistic superoxide dismutase isozyme from diatom Thallassiosira weissflogii: cloning, expression, and enzyme stability. Huang JK; Wen L; Ma H; Huang ZX; Lin CT J Agric Food Chem; 2005 Aug; 53(16):6319-25. PubMed ID: 16076113 [TBL] [Abstract][Full Text] [Related]
28. Site-directed mutagenesis of putative active site residues of 5-enolpyruvylshikimate-3-phosphate synthase. Shuttleworth WA; Pohl ME; Helms GL; Jakeman DL; Evans JN Biochemistry; 1999 Jan; 38(1):296-302. PubMed ID: 9890910 [TBL] [Abstract][Full Text] [Related]
29. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Jeong EY; Sopher C; Kim IS; Lee H Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678 [TBL] [Abstract][Full Text] [Related]
30. Effect of Val 73 --> Trp mutation on the reaction of "cambialistic" superoxide dismutase from Propionibacterium shermanii with hydrogen peroxide. Gabbianelli R; Battistoni A; Capo C; Polticelli F; Rotilio G; Meier B; Desideri A Arch Biochem Biophys; 1997 Sep; 345(1):156-9. PubMed ID: 9281323 [TBL] [Abstract][Full Text] [Related]
31. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276 [TBL] [Abstract][Full Text] [Related]
32. The active-site arginine of S-adenosylmethionine synthetase orients the reaction intermediate. Reczkowski RS; Taylor JC; Markham GD Biochemistry; 1998 Sep; 37(39):13499-506. PubMed ID: 9753435 [TBL] [Abstract][Full Text] [Related]
33. The effect of N-terminal changes on arginyl-tRNA synthetase from Escherichia coli. Liu W; Liu MF; Xia X; Wang ED; Wang YL Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Mar; 34(2):131-7. PubMed ID: 12007009 [TBL] [Abstract][Full Text] [Related]
34. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
35. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Poyner RR; Larsen TM; Wong SW; Reed GH Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465 [TBL] [Abstract][Full Text] [Related]
36. Chemical modification of iron- and manganese-containing superoxide dismutases from Escherichia coli. Borders CL; Horton PJ; Beyer WF Arch Biochem Biophys; 1989 Jan; 268(1):74-80. PubMed ID: 2643390 [TBL] [Abstract][Full Text] [Related]
37. Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate. Mosbah H; Sayari A; Horchani H; Gargouri Y Protein Expr Purif; 2007 Sep; 55(1):31-9. PubMed ID: 17521919 [TBL] [Abstract][Full Text] [Related]
38. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase. Kirksey TJ; Appling DR Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778 [TBL] [Abstract][Full Text] [Related]
39. A thermostable manganese-containing superoxide dismutase from pathogen Chlamydia pneumoniae. Yu J; Yu X; Liu J FEBS Lett; 2004 Mar; 562(1-3):22-6. PubMed ID: 15043996 [TBL] [Abstract][Full Text] [Related]
40. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Borgstahl GE; Parge HE; Hickey MJ; Johnson MJ; Boissinot M; Hallewell RA; Lepock JR; Cabelli DE; Tainer JA Biochemistry; 1996 Apr; 35(14):4287-97. PubMed ID: 8605177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]