BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9698945)

  • 1. Steady-state and time-resolved fluorescence of Esperase: comparison with the X-ray structure in the region of the two tryptophans.
    Georgieva DN; Nikolov P; Betzel C
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Aug; 54A(8):1109-16. PubMed ID: 9698945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence properties of native and photooxidised proteinase K: the X-ray model in the region of the two tryptophans.
    Dolashka P; Dimov I; Genov N; Svendsen I; Wilson KS; Betzel C
    Biochim Biophys Acta; 1992 Feb; 1118(3):303-12. PubMed ID: 1737054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence decay of tryptophans in serine proteinases from microorganisms: relation to X-ray models.
    Genov N; Nikolov P; Betzel C; Wilson K
    Adv Exp Med Biol; 1996; 379():141-5. PubMed ID: 8796318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase.
    Ross JB; Schmidt CJ; Brand L
    Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignment of the heterogeneous static and time-resolved tryptophan fluorescence of 3-phosphoglycerate kinase.
    Dryden DT; Pain RH
    Biochim Biophys Acta; 1989 Aug; 997(3):313-21. PubMed ID: 2669977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II.
    Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG
    Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady state and picosecond time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase.
    Sau AK; Mitra S
    Biochim Biophys Acta; 2000 Sep; 1481(2):273-82. PubMed ID: 11018718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium unfolding of yeast phosphoglycerate kinase and its mutants lacking one or both native tryptophans: a circular dichroism and steady-state and time-resolved fluorescence study.
    Szpikowska BK; Beechem JM; Sherman MA; Mas MT
    Biochemistry; 1994 Mar; 33(8):2217-25. PubMed ID: 8117679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic properties and stability of the neurotoxic complex. Vipoxin and its components.
    Genov N; Dolashka P; Aleksiev B; Mancheva I; Rajashankar KR; Betzel C
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Aug; 54A(8):1117-25. PubMed ID: 9698946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state fluorescence and time-resolved fluorescence monitor changes in tryptophan environment in arginase from Saccharomyces cerevisiae upon removal of catalytic and structural metal ions.
    Green SM; Knutson JR; Hensley P
    Biochemistry; 1990 Oct; 29(39):9159-68. PubMed ID: 2271585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence properties of subtilisins and related proteinases (subtilases): relation to X-ray models.
    Genov N; Nicolov P; Betzel C; Wilson K; Dolashka P
    J Photochem Photobiol B; 1993 May; 18(2-3):265-72. PubMed ID: 8350192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state and picosecond-time-resolved fluorescence studies on the recombinant heme domain of Bacillus megaterium cytochrome P-450.
    Khan KK; Mazumdar S; Modi S; Sutcliffe M; Roberts GC; Mitra S
    Eur J Biochem; 1997 Mar; 244(2):361-70. PubMed ID: 9119001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin binding changes the conformation and decreases tryptophan accessibility of streptavidin.
    Kurzban GP; Gitlin G; Bayer EA; Wilchek M; Horowitz PM
    J Protein Chem; 1990 Dec; 9(6):673-82. PubMed ID: 2073320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state and time-resolved fluorescence studies of the intestinal fatty acid binding protein.
    Chattopadhyay K; Frieden C
    Proteins; 2006 May; 63(2):327-35. PubMed ID: 16421929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence.
    Chen J; Toptygin D; Brand L; King J
    Biochemistry; 2008 Oct; 47(40):10705-21. PubMed ID: 18795792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling.
    Mély Y; Cadène M; Sylte I; Bieth JG
    Biochemistry; 1997 Dec; 36(50):15624-31. PubMed ID: 9398290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.