These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9699736)

  • 21. A compact cryosurgical apparatus for minimally invasive procedures.
    Rabin Y; Julian TB; Wolmark N
    Biomed Instrum Technol; 1997; 31(3):251-8. PubMed ID: 9181244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the cryoablative efficacy of a hybrid cryoprobe operating under freeze-thaw cycles.
    Zhao X; Chua KJ
    Cryobiology; 2013 Jun; 66(3):239-49. PubMed ID: 23454435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound-guided thermocouple placement for cryosurgery.
    Abramovits W; Pruiksma R; Bose S
    Dermatol Surg; 1996 Sep; 22(9):771-3. PubMed ID: 8874524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intralesional cryosurgery enhances the involution of recalcitrant auricular keloids: a new clinical approach supported by experimental studies.
    Har-Shai Y; Sabo E; Rohde E; Hyams M; Assaf C; Zouboulis CC
    Wound Repair Regen; 2006; 14(1):18-27. PubMed ID: 16476068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initial experience of percutaneous renal cryosurgery under the guidance of a horizontal open MRI system.
    Harada J; Dohi M; Mogami T; Fukuda K; Miki K; Furuta N; Kishimoto K; Simizu T; Miyasaka K
    Radiat Med; 2001; 19(6):291-6. PubMed ID: 11837579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized solution and estimation method for cooling performance of downscaled cryoprobe.
    Okajima J
    J Therm Biol; 2019 May; 82():213-221. PubMed ID: 31128650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance.
    Okajima J; Komiya A; Maruyama S
    Cryobiology; 2014 Dec; 69(3):411-8. PubMed ID: 25305055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A pig model of hepatic cryotherapy. In vivo temperature distribution during freezing and histopathological changes.
    Seifert JK; Gerharz CD; Mattes F; Nassir F; Fachinger K; Beil C; Junginger T
    Cryobiology; 2003 Dec; 47(3):214-26. PubMed ID: 14697733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study Frequency Shift Evaluation of Ultrasound in Fresh and Frozen-thawed Tissues of Cryosurgery by AR Model.
    Luo F; Tany Y; Sun H; Liu J; Sheng L
    Cryo Letters; 2020; 41(3):140-144. PubMed ID: 33988643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature determination in the frozen region during cryosurgery of rabbit liver using MR image analysis.
    Gilbert JC; Rubinsky B; Wong ST; Brennan KM; Pease GR; Leung PP
    Magn Reson Imaging; 1997; 15(6):657-67. PubMed ID: 9285805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Simulating experimental study on ultrasonic elastography based monitoring of cryosurgery].
    Liu L; Su L; Wang Q; Liu J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Jul; 34(4):235-40. PubMed ID: 21033105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model for the time-dependent thermal distribution within an iceball surrounding a cryoprobe.
    Rewcastle JC; Sandison GA; Hahn LJ; Saliken JC; McKinnon JG; Donnelly BJ
    Phys Med Biol; 1998 Dec; 43(12):3519-34. PubMed ID: 9869029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery.
    Sandison GA; Loye MP; Rewcastle JC; Hahn LJ; Saliken JC; McKinnon JG; Donnelly BJ
    Phys Med Biol; 1998 Nov; 43(11):3309-24. PubMed ID: 9832018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Fiber Optic Sensor for Monitoring the Spectral Alterations and Depth in Ex Vivo and In Vivo Cryosurgery.
    Ikiades A; Bassukas ID; Kourkoumelis N
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective freezing of target biological tissues after injection of solutions with specific thermal properties.
    Yu TH; Liu J; Zhou YX
    Cryobiology; 2005 Apr; 50(2):174-82. PubMed ID: 15843007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical Study and Experimental Verification of Tissue Cryofreezing Based on Flexible Cryoprobe System.
    Song T; Liu B; Xu B; Yang C
    Cryo Letters; 2019; 40(3):164-172. PubMed ID: 31095665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of a moratorium to achieve consistent liquid nitrogen cryoprobe performance.
    Rewcastle JC; Hahn LJ; Saliken JC; McKinnon JG
    J Surg Oncol; 1997 Oct; 66(2):110-3. PubMed ID: 9354166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new cryosurgical device for controlled freezing.
    Rabin Y; Shitzer A
    Cryobiology; 1996 Feb; 33(1):82-92. PubMed ID: 8812088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Normal and Freeze-Thawed Tissues in vitro Through The Ultrasonic Integrated Backscatter.
    Sheng L; Yang P; He Z; Wang G; Luo J; Liu J
    Cryo Letters; 2016; 37(5):303-307. PubMed ID: 27924997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Histological examinations on the hemostatic effect of freezing during surgical procedures in the head and neck (author's transl)].
    Ganz H; Fülling J; Klein H
    Laryngol Rhinol Otol (Stuttg); 1975 Apr; 54(4):328-35. PubMed ID: 129610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.