These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9699972)

  • 1. Protein recovery using gas-liquid dispersions.
    Noble M; Brown A; Jauregi P; Kaul A; Varley J
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):31-43. PubMed ID: 9699972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant, AOT.
    Fuda E; Jauregi P; Pyle DL
    Biotechnol Prog; 2004; 20(2):514-25. PubMed ID: 15058997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal gas aphrons: A novel approach to protein recovery.
    Jauregi P; Varley J
    Biotechnol Bioeng; 1998 Aug; 59(4):471-81. PubMed ID: 10099361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insight into the mechanism of protein separation by colloidal gas aphrons (CGA) generated from ionic surfactants.
    Fuda E; Jauregi P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 843(2):317-26. PubMed ID: 16891165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective separation of beta-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB.
    Fuda E; Bhatia D; Pyle DL; Jauregi P
    Biotechnol Bioeng; 2005 Jun; 90(5):532-42. PubMed ID: 15816026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system.
    Zhang M; Guiraud P
    Water Res; 2017 Dec; 126():399-410. PubMed ID: 28987891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.
    Ward K; Xi J; Stuckey DC
    Colloids Surf B Biointerfaces; 2015 Dec; 136():424-30. PubMed ID: 26440758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foam formation and mitigation in a three-phase gas-liquid-particulate system.
    Vijayaraghavan K; Nikolov A; Wasan D
    Adv Colloid Interface Sci; 2006 Nov; 123-126():49-61. PubMed ID: 16997269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aphron applications--a review of recent and current research.
    Molaei A; Waters KE
    Adv Colloid Interface Sci; 2015 Feb; 216():36-54. PubMed ID: 25578407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization and characterization of colloidal gas aphron dispersions.
    Dai Y; Deng T
    J Colloid Interface Sci; 2003 May; 261(2):360-5. PubMed ID: 16256542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil.
    Mukhopadhyay S; Mukherjee S; Hashim MA; Sen Gupta B
    Chemosphere; 2015 Jan; 119():355-362. PubMed ID: 25061940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal gas aphrons for biotechnology applications: a mini review.
    Pal P; Hasan SW; Abu Haija M; Sillanpää M; Banat F
    Crit Rev Biotechnol; 2023 Dec; 43(7):971-981. PubMed ID: 35968911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the influence of surfactants on the transfer of gases into liquids by inverse gas chromatography.
    Atta KR; Gavril D; Loukopoulos V; Karaiskakis G
    J Chromatogr A; 2004 Jan; 1023(2):287-96. PubMed ID: 14753695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of bubble size distribution in protein foam fractionation column using capillary probe with photoelectric sensors.
    Du L; Ding Y; Prokop A; Tanner RD
    Appl Biochem Biotechnol; 2001; 91-93():387-404. PubMed ID: 11963868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drainage mechanism of microbubble dispersion and factors influencing its stability.
    Feng W; Singhal N; Swift S
    J Colloid Interface Sci; 2009 Sep; 337(2):548-54. PubMed ID: 19541325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous foaming for protein recovery: part I. Recovery of beta-casein.
    Brown AK; Kaul A; Varley J
    Biotechnol Bioeng; 1999 Feb; 62(3):278-90. PubMed ID: 10099539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing foam drainage using foam fractionation column with spiral internal for separation of sodium dodecyl sulfate.
    Yang QW; Wu ZL; Zhao YL; Wang Y; Li R
    J Hazard Mater; 2011 Sep; 192(3):1900-4. PubMed ID: 21784581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyaluminum chloride-functionalized colloidal gas aphrons for flotation separation of nanoparticles from water.
    Zhang M; Lu X; Zhou Q; Xie L; Shen C
    J Hazard Mater; 2019 Jan; 362():196-205. PubMed ID: 30240993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.