BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9699988)

  • 1. Effect of centrifugation on separation by aqueous two-phase partition of an early and late endosome model using inside-out plasma membrane vesicles from plants.
    Morré DJ; Peter AD; Morré DM; Van Alstine JM
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):195-201. PubMed ID: 9699988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of endosomes by aqueous two-phase partition and free-flow electrophoresis.
    Morré DJ; Morré DM; Van Alstine JM
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):203-15. PubMed ID: 9699989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental basis for separation of membrane vesicles by preparative free-flow electrophoresis.
    Morré DJ; Lawrence J; Safranski K; Hammond T; Morré DM
    J Chromatogr A; 1994 May; 668(1):201-13. PubMed ID: 7516246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of aqueous two-phase partition to isolation of membranes from plants: a periodic NADH oxidase activity as a marker for right side-out plasma membrane vesicles.
    Morré DJ; Morré DM
    J Chromatogr B Biomed Sci Appl; 2000 Jun; 743(1-2):369-76. PubMed ID: 10942307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells.
    Morré DM; Morre DJ
    J Chromatogr B Biomed Sci Appl; 2000 Jun; 743(1-2):377-87. PubMed ID: 10942308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue.
    Giannini JL; Briskin DP
    Arch Biochem Biophys; 1988 Feb; 260(2):653-60. PubMed ID: 2893588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of purified plasma membranes from cultured cells and hepatomas by two-phase partition and preparative free-flow electrophoresis.
    Navas P; Nowack DD; Morré DJ
    Cancer Res; 1989 Apr; 49(8):2147-56. PubMed ID: 2702656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants.
    Schmid S; Fuchs R; Kielian M; Helenius A; Mellman I
    J Cell Biol; 1989 Apr; 108(4):1291-300. PubMed ID: 2925786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced separation of membranes during free flow zonal electrophoresis in plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Anal Chem; 2007 Jul; 79(14):5181-7. PubMed ID: 17566980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.
    Marsh M; Schmid S; Kern H; Harms E; Male P; Mellman I; Helenius A
    J Cell Biol; 1987 Apr; 104(4):875-86. PubMed ID: 3031085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of mammalian plasma membranes by aqueous two-phase partition.
    Morré DJ; Morré DM
    Biotechniques; 1989 Oct; 7(9):946-8, 950-4, 956-8. PubMed ID: 2483665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yield isolation of functionally competent endosomes from mouse lymphocytes.
    Beaumelle BD; Hopkins CR
    Biochem J; 1989 Nov; 264(1):137-49. PubMed ID: 2604710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of highly purified, functional endosomes from toad urinary bladder.
    Hammond TG; Morré DJ; Harris HW; Zeidel ML
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):471-6. PubMed ID: 8240245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subfractionation of hepatic endosomes in Nycodenz gradients and by free-flow electrophoresis. Separation of ligand-transporting and receptor-enriched membranes.
    Evans WH; Flint N
    Biochem J; 1985 Nov; 232(1):25-32. PubMed ID: 2867760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP- and growth substance-dependent cell-free enlargement of plasma membrane vesicles from soybean.
    Auderset G; Morré DJ
    Biofactors; 2006; 28(2):83-90. PubMed ID: 17379939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH oxidase activity of HeLa plasma membranes inhibited by the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl) urea (LY181984) at an external site.
    Morré DJ
    Biochim Biophys Acta; 1995 Dec; 1240(2):201-8. PubMed ID: 8541291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of dipyridyl-dithio substrates to measure directly the protein disulfide-thiol interchange activity of the auxin stimulated NADH: protein disulfide reductase (NADH oxidase) of soybean plasma membranes.
    Morré DJ; Gomez-Rey ML; Schramke C; Em O; Lawler J; Hobeck J; Morré DM
    Mol Cell Biochem; 1999 Oct; 200(1-2):7-13. PubMed ID: 10569178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma membrane vesicles of opposite sidedness from soybean hypocotyls by preparative free-flow electrophoresis.
    Canut H; Brightman A; Boudet AM; Morré DJ
    Plant Physiol; 1988 Feb; 86(2):631-7. PubMed ID: 16665959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inside-out but not right side-out plasma membrane vesicles from soybean enlarge when treated with ATP + 2,4-D as determined by electron microscopy and light scattering: evidence for involvement of a plasma membrane AAA-ATPase.
    Hicks-Berger C; Morré DJ
    Biofactors; 2006; 28(2):91-104. PubMed ID: 17379940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH oxidase activity of soybean plasma membranes inhibited by submicromolar concentrations of ATP.
    Morré DJ
    Mol Cell Biochem; 1998 Oct; 187(1-2):41-6. PubMed ID: 9788741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.