These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9700108)

  • 1. High-frequency respiratory impedance measured by forced-oscillation technique in infants.
    Frey U; Silverman M; Kraemer R; Jackson AC
    Am J Respir Crit Care Med; 1998 Aug; 158(2):363-70. PubMed ID: 9700108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in airway wall properties in infants with a history of wheezing disorders.
    Frey U; Makkonen K; Wellman T; Beardsmore C; Silverman M
    Am J Respir Crit Care Med; 2000 Jun; 161(6):1825-9. PubMed ID: 10852752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of respiratory input impedance in healthy infants.
    Jackson AC; Neff KM; Dorkin HL; Lutchen KR
    Pediatr Pulmonol; 1996 Dec; 22(6):364-75. PubMed ID: 9016470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in airway wall compliance as a possible mechanism for wheezing disorders in infants.
    Frey U; Jackson AC; Silverman M
    Eur Respir J; 1998 Jul; 12(1):136-42. PubMed ID: 9701428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency respiratory input impedance measurements in infants assessed by the high speed interrupter technique.
    Frey U; Silverman M; Kraemer R; Jackson AC
    Eur Respir J; 1998 Jul; 12(1):148-58. PubMed ID: 9701430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory system reactance as an indicator of the intrathoracic airway response to methacholine in children.
    Bouaziz N; Beyaert C; Gauthier R; Monin P; Peslin R; Marchal F
    Pediatr Pulmonol; 1996 Jul; 22(1):7-13. PubMed ID: 8856798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input respiratory impedance to estimate airway hyperreactivity in children: standard method versus head generator.
    Marchal F; Mazurek H; Habib M; Duvivier C; Derelle J; Peslin R
    Eur Respir J; 1994 Mar; 7(3):601-7. PubMed ID: 8013617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume dependence of high-frequency respiratory mechanics in healthy adults.
    Thamrin C; Finucane KE; Singh B; Hantos Z; Sly PD
    Ann Biomed Eng; 2008 Jan; 36(1):162-70. PubMed ID: 17943446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of airway resistance and total respiratory system resistance in infants.
    Springer C; Vilozni D; Bar-Yishay E; Avital A; Noviski N; Godfrey S
    Am Rev Respir Dis; 1993 Oct; 148(4 Pt 1):1008-12. PubMed ID: 8214917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered respiratory tissue mechanics in asymptomatic wheezy infants.
    Hall GL; Hantos Z; Sly PD
    Am J Respir Crit Care Med; 2001 Oct; 164(8 Pt 1):1387-91. PubMed ID: 11704583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of frequency range and input impedance on airway-tissue separation implied from transfer impedance.
    Lutchen KR; Everett JR; Jackson AC
    J Appl Physiol (1985); 1993 Mar; 74(3):1089-99. PubMed ID: 8482647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of respiratory inductance plethysmography with thoracoabdominal compression in bronchial challenges in infants and young children.
    Springer C; Godfrey S; Vilozni D; Bar-Yishay E; Noviski N; Avital A
    Am J Respir Crit Care Med; 1996 Sep; 154(3 Pt 1):665-9. PubMed ID: 8810603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New aspects of airway mechanics in pre-term infants.
    Henschen M; Stocks J; Brookes I; Frey U
    Eur Respir J; 2006 May; 27(5):913-20. PubMed ID: 16455837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative impact of the noseclip on high-frequency respiratory impedance measurements.
    Thamrin C; Albu G; Sly PD; Hantos Z
    Respir Physiol Neurobiol; 2009 Jan; 165(1):115-8. PubMed ID: 19010453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of new lung function tests to assess methacholine-induced airway obstruction in infants.
    Benoist MR; Brouard JJ; Rufin P; Delacourt C; Waernessyckle S; Scheinmann P
    Pediatr Pulmonol; 1994 Nov; 18(5):308-16. PubMed ID: 7898970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility and variability of neonatal and infant lung function measurement using the single occlusion technique.
    Katier N; Uiterwaal CS; de Jong BM; Kimpen JL; van der Ent CK
    Chest; 2005 Sep; 128(3):1822-9. PubMed ID: 16162792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methacholine-induced lung function changes measured with infant body plethysmography.
    Malmberg LP; von Wright L; Kotaniemi-Syrjänen A; Malmström K; Pelkonen AS; Mäkelä MJ
    Pediatr Pulmonol; 2011 Apr; 46(4):362-8. PubMed ID: 20967846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung function in preschool children with a history of wheezing measured by forced oscillation and plethysmographic specific airway resistance.
    Harrison J; Gibson AM; Johnson K; Singh G; Skoric B; Ranganathan S
    Pediatr Pulmonol; 2010 Nov; 45(11):1049-56. PubMed ID: 20848582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human respiratory input impedance between 32 and 800 Hz, measured by interrupter technique and forced oscillations.
    Frey U; Suki B; Kraemer R; Jackson AC
    J Appl Physiol (1985); 1997 Mar; 82(3):1018-23. PubMed ID: 9074996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methacholine responsiveness using the raised volume forced expiration technique in infants.
    Hayden MJ; Devadason SG; Sly PD; Wildhaber JH; LeSouëf PN
    Am J Respir Crit Care Med; 1997 May; 155(5):1670-5. PubMed ID: 9154874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.