These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 9701287)

  • 1. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast.
    Ito K; Ebihara K; Nakamura Y
    RNA; 1998 Aug; 4(8):958-72. PubMed ID: 9701287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids.
    Ebihara K; Nakamura Y
    RNA; 1999 Jun; 5(6):739-50. PubMed ID: 10376874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe.
    Kong C; Ito K; Walsh MA; Wada M; Liu Y; Kumar S; Barford D; Nakamura Y; Song H
    Mol Cell; 2004 Apr; 14(2):233-45. PubMed ID: 15099522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction.
    Merkulova TI; Frolova LY; Lazar M; Camonis J; Kisselev LL
    FEBS Lett; 1999 Jan; 443(1):41-7. PubMed ID: 9928949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3.
    Zhouravleva G; Frolova L; Le Goff X; Le Guellec R; Inge-Vechtomov S; Kisselev L; Philippe M
    EMBO J; 1995 Aug; 14(16):4065-72. PubMed ID: 7664746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae.
    Eurwilaichitr L; Graves FM; Stansfield I; Tuite MF
    Mol Microbiol; 1999 May; 32(3):485-96. PubMed ID: 10320572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome.
    Wada M; Ito K
    Nucleic Acids Res; 2014 Jul; 42(12):7851-66. PubMed ID: 24914055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination.
    Urakov VN; Valouev IA; Kochneva-Pervukhova NV; Packeiser AN; Vishnevsky AY; Glebov OO; Smirnov VN; Ter-Avanesyan MD
    BMC Mol Biol; 2006 Oct; 7():34. PubMed ID: 17034622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains.
    Frolova LY; Merkulova TI; Kisselev LL
    RNA; 2000 Mar; 6(3):381-90. PubMed ID: 10744022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase.
    Frolova L; Le Goff X; Zhouravleva G; Davydova E; Philippe M; Kisselev L
    RNA; 1996 Apr; 2(4):334-41. PubMed ID: 8634914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast.
    Stansfield I; Eurwilaichitr L; Akhmaloka ; Tuite MF
    Mol Microbiol; 1996 Jun; 20(6):1135-43. PubMed ID: 8809766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast.
    Valouev IA; Fominov GV; Sokolova EE; Smirnov VN; Ter-Avanesyan MD
    BMC Mol Biol; 2009 Jun; 10():60. PubMed ID: 19545407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of translational release factor eRF1a binding sites on eRF3 in Euplotes octocarinatus.
    Song L; Chai BF; Wang W; Liang AH
    Res Microbiol; 2006 Nov; 157(9):842-50. PubMed ID: 16963230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring contacts of eRF1 with the 3'-terminus of the P site tRNA and mRNA stop signal in the human ribosome at various translation termination steps.
    Bulygin KN; Graifer DM; Hountondji C; Frolova LY; Karpova GG
    Biochim Biophys Acta Gene Regul Mech; 2017 Jul; 1860(7):782-793. PubMed ID: 28457996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3.
    Akhmaloka ; Susilowati PE; Subandi ; Madayanti F
    Int J Biol Sci; 2008 Apr; 4(2):87-95. PubMed ID: 18463713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dissection of translation termination mechanism identifies two new critical regions in eRF1.
    Hatin I; Fabret C; Rousset JP; Namy O
    Nucleic Acids Res; 2009 Apr; 37(6):1789-98. PubMed ID: 19174561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.
    Salas-Marco J; Bedwell DM
    Mol Cell Biol; 2004 Sep; 24(17):7769-78. PubMed ID: 15314182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Termination of translation in eukaryotes is mediated by the quaternary eRF1*eRF3*GTP*Mg2+ complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct.
    Mitkevich VA; Kononenko AV; Petrushanko IY; Yanvarev DV; Makarov AA; Kisselev LL
    Nucleic Acids Res; 2006; 34(14):3947-54. PubMed ID: 16914449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome.
    Bulygin KN; Bartuli YS; Malygin AA; Graifer DM; Frolova LY; Karpova GG
    RNA; 2016 Feb; 22(2):278-89. PubMed ID: 26655225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3.
    Beißel C; Neumann B; Uhse S; Hampe I; Karki P; Krebber H
    Nucleic Acids Res; 2019 May; 47(9):4798-4813. PubMed ID: 30873535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.