BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9701291)

  • 21. A suppressor of a yeast splicing mutation (prp8-1) encodes a putative ATP-dependent RNA helicase.
    Jamieson DJ; Rahe B; Pringle J; Beggs JD
    Nature; 1991 Feb; 349(6311):715-7. PubMed ID: 1996139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The first ATPase domain of the yeast 246-kDa protein is required for in vivo unwinding of the U4/U6 duplex.
    Kim DH; Rossi JJ
    RNA; 1999 Jul; 5(7):959-71. PubMed ID: 10411139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A connection between pre-mRNA splicing and the cell cycle in fission yeast: cdc28+ is allelic with prp8+ and encodes an RNA-dependent ATPase/helicase.
    Lundgren K; Allan S; Urushiyama S; Tani T; Ohshima Y; Frendewey D; Beach D
    Mol Biol Cell; 1996 Jul; 7(7):1083-94. PubMed ID: 8862522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Helicases involved in splicing from malaria parasite Plasmodium falciparum.
    Tuteja R
    Parasitol Int; 2011 Dec; 60(4):335-40. PubMed ID: 21996352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional conservation of the human homolog of the yeast pre-mRNA splicing factor Prp17p.
    Lindsey LA; Garcia-Blanco MA
    J Biol Chem; 1998 Dec; 273(49):32771-5. PubMed ID: 9830021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The yeast PRP2 protein, a putative RNA-dependent ATPase, shares extensive sequence homology with two other pre-mRNA splicing factors.
    Chen JH; Lin RJ
    Nucleic Acids Res; 1990 Nov; 18(21):6447. PubMed ID: 2147058
    [No Abstract]   [Full Text] [Related]  

  • 27. A dominant negative mutation in the conserved RNA helicase motif 'SAT' causes splicing factor PRP2 to stall in spliceosomes.
    Plumpton M; McGarvey M; Beggs JD
    EMBO J; 1994 Feb; 13(4):879-87. PubMed ID: 8112301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PRP28, a 'DEAD-box' protein, is required for the first step of mRNA splicing in vitro.
    Strauss EJ; Guthrie C
    Nucleic Acids Res; 1994 Aug; 22(15):3187-93. PubMed ID: 7520570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA helicase dynamics in pre-mRNA splicing.
    Schwer B; Meszaros T
    EMBO J; 2000 Dec; 19(23):6582-91. PubMed ID: 11101530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites.
    Semlow DR; Blanco MR; Walter NG; Staley JP
    Cell; 2016 Feb; 164(5):985-98. PubMed ID: 26919433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and functional ordering of Slu7p and Prp17p during the second step of pre-mRNA splicing in yeast.
    Jones MH; Frank DN; Guthrie C
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9687-91. PubMed ID: 7568198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes.
    Wagner JD; Jankowsky E; Company M; Pyle AM; Abelson JN
    EMBO J; 1998 May; 17(10):2926-37. PubMed ID: 9582286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins.
    Edwalds-Gilbert G; Kim DH; Kim SH; Tseng YH; Yu Y; Lin RJ
    RNA; 2000 Aug; 6(8):1106-19. PubMed ID: 10943890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure, function and regulation of spliceosomal RNA helicases.
    Cordin O; Hahn D; Beggs JD
    Curr Opin Cell Biol; 2012 Jun; 24(3):431-8. PubMed ID: 22464735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental regulation of DEAD box proteins and cloning of putative RNA helicase genes from Dictyostelium discoideum.
    Mahal B; Nellen W
    Biol Chem Hoppe Seyler; 1994 Nov; 375(11):759-63. PubMed ID: 7695838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trans-complementation of the second step of pre-mRNA splicing by exogenous 5' exons.
    Chanfreau G; Gouyette C; Schwer B; Jacquier A
    RNA; 1999 Jul; 5(7):876-82. PubMed ID: 10411131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing.
    James SA; Turner W; Schwer B
    RNA; 2002 Aug; 8(8):1068-77. PubMed ID: 12212850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein.
    Applequist SE; Selg M; Raman C; Jäck HM
    Nucleic Acids Res; 1997 Feb; 25(4):814-21. PubMed ID: 9064659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mouse erythroid cells express multiple putative RNA helicase genes exhibiting high sequence conservation from yeast to mammals.
    Gee SL; Conboy JG
    Gene; 1994 Mar; 140(2):171-7. PubMed ID: 8144024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-mRNA splicing within an assembled yeast spliceosome requires an RNA-dependent ATPase and ATP hydrolysis.
    Kim SH; Lin RJ
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):888-92. PubMed ID: 8430102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.