These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9701401)

  • 1. Automated segmentation of muscle fiber images using active contour models.
    Klemencic A; Kovacic S; Pernus F
    Cytometry; 1998 Aug; 32(4):317-26. PubMed ID: 9701401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated segmentation and morphometrical analysis of muscle fiber images.
    Kim YJ; Brox T; Feiden W; Weickert J
    Cytometry A; 2007 Jan; 71(1):8-15. PubMed ID: 17211880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated image analysis of skeletal muscle fiber cross-sectional area.
    Mula J; Lee JD; Liu F; Yang L; Peterson CA
    J Appl Physiol (1985); 2013 Jan; 114(1):148-55. PubMed ID: 23139362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems.
    Wang YY; Sun YN; Lin CC; Ju MS
    Artif Intell Med; 2012 Mar; 54(3):189-200. PubMed ID: 22239996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiautomatic segmentation of aortic valve from sequenced ultrasound image using a novel shape-constraint GCV model.
    Guo Y; Dong B; Wang B; Xie H; Zhang S; Gu L
    Med Phys; 2014 Jul; 41(7):072901. PubMed ID: 24989411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle.
    Waisman A; Norris AM; Elías Costa M; Kopinke D
    Sci Rep; 2021 Jun; 11(1):11793. PubMed ID: 34083673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated image segmentation method to analyse skeletal muscle cross section in exercise-induced regenerating myofibers.
    Rahmati M; Rashno A
    Sci Rep; 2021 Oct; 11(1):21327. PubMed ID: 34716401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle.
    Reyes-Fernandez PC; Periou B; Decrouy X; Relaix F; Authier FJ
    Skelet Muscle; 2019 May; 9(1):15. PubMed ID: 31133066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated high-content morphological analysis of muscle fiber histology.
    Miazaki M; Viana MP; Yang Z; Comin CH; Wang Y; da F Costa L; Xu X
    Comput Biol Med; 2015 Aug; 63():28-35. PubMed ID: 26004825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual sarcomere lengths in whole muscle fibers and optimal fiber length computation.
    Infantolino BW; Ellis MJ; Challis JH
    Anat Rec (Hoboken); 2010 Nov; 293(11):1913-9. PubMed ID: 20818614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool.
    Mayeuf-Louchart A; Hardy D; Thorel Q; Roux P; Gueniot L; Briand D; Mazeraud A; Bouglé A; Shorte SL; Staels B; Chrétien F; Duez H; Danckaert A
    Skelet Muscle; 2018 Aug; 8(1):25. PubMed ID: 30081940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning-based approach for fully automated segmentation and quantitative analysis of muscle fibers in pig skeletal muscle.
    Yao Z; Wo J; Zheng E; Yang J; Li H; Li X; Li J; Luo Y; Wang T; Fan Z; Zhan Y; Yang Y; Wu Z; Yin L; Meng F
    Meat Sci; 2024 Jul; 213():109506. PubMed ID: 38603965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural network approach to analyze cross-sections of muscle fibers in pathological images.
    Li Y; Yang Z; Wang Y; Cao X; Xu X
    Comput Biol Med; 2019 Jan; 104():97-104. PubMed ID: 30463027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biomedical images segmentation by the regions growth method].
    Alvarez M; Rivas M; Rukoz M
    Acta Cient Venez; 2001; 52(3):192-8. PubMed ID: 11899712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.
    Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W
    MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate liver vessel segmentation via active contour model with dense vessel candidates.
    Chung M; Lee J; Chung JW; Shin YG
    Comput Methods Programs Biomed; 2018 Nov; 166():61-75. PubMed ID: 30415719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated liver segmentation from SPIR image series.
    Göçeri E; Gürcan MN; Dicle O
    Comput Biol Med; 2014 Oct; 53():265-78. PubMed ID: 25192606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated muscle histopathology analysis using CellProfiler.
    Lau YS; Xu L; Gao Y; Han R
    Skelet Muscle; 2018 Oct; 8(1):32. PubMed ID: 30336774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global optimal hybrid geometric active contour for automated lung segmentation on CT images.
    Zhang W; Wang X; Zhang P; Chen J
    Comput Biol Med; 2017 Dec; 91():168-180. PubMed ID: 29080491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery.
    Ali S; Madabhushi A
    IEEE Trans Med Imaging; 2012 Jul; 31(7):1448-60. PubMed ID: 22498689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.