These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9701428)

  • 1. Differences in airway wall compliance as a possible mechanism for wheezing disorders in infants.
    Frey U; Jackson AC; Silverman M
    Eur Respir J; 1998 Jul; 12(1):136-42. PubMed ID: 9701428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency respiratory input impedance measurements in infants assessed by the high speed interrupter technique.
    Frey U; Silverman M; Kraemer R; Jackson AC
    Eur Respir J; 1998 Jul; 12(1):148-58. PubMed ID: 9701430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in airway wall properties in infants with a history of wheezing disorders.
    Frey U; Makkonen K; Wellman T; Beardsmore C; Silverman M
    Am J Respir Crit Care Med; 2000 Jun; 161(6):1825-9. PubMed ID: 10852752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency respiratory impedance measured by forced-oscillation technique in infants.
    Frey U; Silverman M; Kraemer R; Jackson AC
    Am J Respir Crit Care Med; 1998 Aug; 158(2):363-70. PubMed ID: 9700108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of resistance measured by the interrupter technique and by passive mechanics in sedated infants.
    Chavasse RJ; Bastian-Lee Y; Seddon P
    Eur Respir J; 2001 Aug; 18(2):330-4. PubMed ID: 11529292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human respiratory input impedance between 32 and 800 Hz, measured by interrupter technique and forced oscillations.
    Frey U; Suki B; Kraemer R; Jackson AC
    J Appl Physiol (1985); 1997 Mar; 82(3):1018-23. PubMed ID: 9074996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Lung function measurements using body plethysmography in young children with acute lower respiratory tract infection].
    Zhang X; Jiang G; Wang L; Liu L; Shi P; Wan C; Qian L
    Zhonghua Er Ke Za Zhi; 2014 Jul; 52(7):525-30. PubMed ID: 25224059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tidal breathing flow volume profiles during sleep in wheezing infants measured by impedance pneumography.
    Gracia-Tabuenca J; Seppä VP; Jauhiainen M; Kotaniemi-Syrjänen A; Malmström K; Pelkonen A; Mäkelä M; Viik J; Malmberg LP
    J Appl Physiol (1985); 2019 May; 126(5):1409-1418. PubMed ID: 30763165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma.
    Downie SR; Salome CM; Verbanck S; Thompson BR; Berend N; King GG
    J Appl Physiol (1985); 2013 Mar; 114(6):770-7. PubMed ID: 23372144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methacholine and ovalbumin challenges assessed by forced oscillations and synchrotron lung imaging.
    Bayat S; Strengell S; Porra L; Janosi TZ; Petak F; Suhonen H; Suortti P; Hantos Z; Sovijärvi AR; Habre W
    Am J Respir Crit Care Med; 2009 Aug; 180(4):296-303. PubMed ID: 19483115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chest wall strapping on mechanical response to methacholine in humans.
    Torchio R; Gulotta C; Ciacco C; Perboni A; Guglielmo M; Crosa F; Zerbini M; Brusasco V; Hyatt RE; Pellegrino R
    J Appl Physiol (1985); 2006 Aug; 101(2):430-8. PubMed ID: 16497846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional residual capacity and total respiratory system impedance in wheezing infants.
    Desager KN; Van Bever HP; Willemen M; De Backer W; Vermeire PA
    Pediatr Pulmonol; 1994 Jun; 17(6):354-8. PubMed ID: 8090605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New aspects of airway mechanics in pre-term infants.
    Henschen M; Stocks J; Brookes I; Frey U
    Eur Respir J; 2006 May; 27(5):913-20. PubMed ID: 16455837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of respiratory impedance and flow transfer functions during high frequency oscillations.
    Peslin R
    Br J Anaesth; 1989; 63(7 Suppl 1):91S-94S. PubMed ID: 2611083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximal flow at functional residual capacity in asthmatic preschool children.
    Vilozni D; Livnat G; Hakim F; Bentur L
    J Asthma; 2015; 52(6):560-4. PubMed ID: 25708197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung function at one month of age as a risk factor for infant respiratory symptoms in a high risk population.
    Murray CS; Pipis SD; McArdle EC; Lowe LA; Custovic A; Woodcock A;
    Thorax; 2002 May; 57(5):388-92. PubMed ID: 11978912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why are infants prone to wheeze? Physiological aspects of wheezing disorders in infants.
    Frey U
    Swiss Med Wkly; 2001 Jul; 131(27-28):400-6. PubMed ID: 11571843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between wheezing and lung mechanics during methacholine-induced bronchoconstriction in asthmatic subjects.
    Spence DP; Graham DR; Jamieson G; Cheetham BM; Calverley PM; Earis JE
    Am J Respir Crit Care Med; 1996 Aug; 154(2 Pt 1):290-4. PubMed ID: 8756796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of respiratory input impedance in healthy infants.
    Jackson AC; Neff KM; Dorkin HL; Lutchen KR
    Pediatr Pulmonol; 1996 Dec; 22(6):364-75. PubMed ID: 9016470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of raised lung volume technique on subsequent measures of V'maxFRC in infants.
    Lum S; Hulskamp G; Hoo AF; Ljungberg H; Stocks J
    Pediatr Pulmonol; 2004 Aug; 38(2):146-54. PubMed ID: 15211699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.