These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 970156)

  • 1. The influence of pulmonary blood flow rate on vascular input impedance and hydraulic power in the sympathetically and noradrenaline stimulated cat lung.
    Piene H
    Acta Physiol Scand; 1976 Sep; 98(1):44-53. PubMed ID: 970156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of vessel distension and myogenic tone on pulmonary arterial input impedance. A study using a computer model of rabbit lung.
    Piene H
    Acta Physiol Scand; 1976 Sep; 98(1):54-66. PubMed ID: 970157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some physical properties of the pulmonary arterial bed deduced from pulsatile arterial flow and pressure.
    Piene H
    Acta Physiol Scand; 1976 Nov; 98(3):295-306. PubMed ID: 998279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of moderate vasoconstriction on the wave reflection properties of the pulmonary arterial bed.
    Piene H; Hauge A
    Acta Physiol Scand; 1976 Sep; 98(1):37-43. PubMed ID: 970155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studies on pressure-flow relationships in the pulmonary vascular bed, during antegrade and retrograde pulsatile perfusion of an excised canine lung lobe preparation].
    Tobise K
    Hokkaido Igaku Zasshi; 1982 May; 57(3):317-30. PubMed ID: 7129349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Right ventricular-vascular interaction in congestive heart failure. Importance of low-frequency impedance.
    Kussmaul WG; Altschuler JA; Matthai WH; Laskey WK
    Circulation; 1993 Sep; 88(3):1010-5. PubMed ID: 8353862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of pulsatile hydraulic power in the pulmonary circultation caused by moderate vasoconstriction.
    Piene H; Hauge A
    Cardiovasc Res; 1976 Sep; 10(5):503-13. PubMed ID: 971467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cardiac output on pulmonary hemodynamics.
    Grant BJ; Canty JM
    Respir Physiol; 1989 Jun; 76(3):303-17. PubMed ID: 2749030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time varying loading of the pulmonary circulation: a model to describe hemodynamic observations in the stiff left atrial syndrome.
    Fitchett DH
    Can J Cardiol; 1995 Jan; 11(1):23-9. PubMed ID: 7850661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Aortic input impedance in ventricular septal defect].
    Endo H; Ichihashi K; Kuramatsu T; Shiraishi H; Yano S; Yanagisawa M; Yaginuma Y
    J Cardiol; 1991; 21(3):659-65. PubMed ID: 1843517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sympathetic vasoconstrictor fibres, noradrenaline and vasopressin on the intestinal vascular resistance during constant blood flow or blood pressure.
    Dresel P; Wallentin I
    Acta Physiol Scand; 1966 Apr; 66(4):427-36. PubMed ID: 5927268
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of pulmonary vascular obstruction on right ventricular afterload.
    Fitzpatrick JM; Grant BJ
    Am Rev Respir Dis; 1990 Apr; 141(4 Pt 1):944-52. PubMed ID: 2183658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure.
    Saouti N; Westerhof N; Helderman F; Marcus JT; Boonstra A; Postmus PE; Vonk-Noordegraaf A
    Am J Respir Crit Care Med; 2010 Nov; 182(10):1315-20. PubMed ID: 20622041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sympathetic stimulation and vasoactive substances on the canine pulmonary veins.
    Kadowitz PJ; Joiner PD; Hyman AL
    J Clin Invest; 1975 Aug; 56(2):354-65. PubMed ID: 1150876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions.
    Kartamyshev SP; Balashov SA; Melkumyants AM
    J Vasc Res; 2007; 44(1):1-10. PubMed ID: 17148940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulmonary vascular resistance and impedance in isolated mouse lungs: effects of pulmonary emboli.
    Tuchscherer HA; Webster EB; Chesler NC
    Ann Biomed Eng; 2006 Apr; 34(4):660-8. PubMed ID: 16568350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings: Sympathetic nerve control of pulmonary vascular resistance and impedance in isolated perfused lungs of the dog.
    Daly Ide B; Daly Mde B
    J Physiol; 1973 Oct; 234(2):106P-108P. PubMed ID: 4767033
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of aprotinin on the mean arterial pressure, carotid artery blood flow, and hindlimb vascular resistance in the live rat, and pulmonary vascular resistance in the isolated perfused rat lung.
    Jahr JS; Kaye AD; Kang B; Feng CJ; Nossaman BD
    J Med; 1995; 26(1-2):31-42. PubMed ID: 7561529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary input impedance or pulmonary vascular resistance?
    Morpurgo M; Jezek V; Ostadal B
    Monaldi Arch Chest Dis; 1995 Aug; 50(4):282-5. PubMed ID: 7550208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.