BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9701631)

  • 1. Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro.
    Derfus B; Kranendonk S; Camacho N; Mandel N; Kushnaryov V; Lynch K; Ryan L
    Calcif Tissue Int; 1998 Sep; 63(3):258-62. PubMed ID: 9701631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an additional articular cartilage vesicle fraction that generates calcium pyrophosphate dihydrate crystals in vitro.
    Derfus B; Steinberg M; Mandel N; Buday M; Daft L; Ryan L
    J Rheumatol; 1995 Aug; 22(8):1514-9. PubMed ID: 7473476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of matrix vesicles derived from normal and osteoarthritic human articular cartilage.
    Derfus BA; Kurtin SM; Camacho NP; Kurup I; Ryan LM
    Connect Tissue Res; 1996; 35(1-4):337-42. PubMed ID: 9084673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro.
    Derfus BA; Rachow JW; Mandel NS; Boskey AL; Buday M; Kushnaryov VM; Ryan LM
    Arthritis Rheum; 1992 Feb; 35(2):231-40. PubMed ID: 1734912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor beta-1 stimulates articular chondrocyte elaboration of matrix vesicles capable of greater calcium pyrophosphate precipitation.
    Derfus BA; Camacho NP; Olmez U; Kushnaryov VM; Westfall PR; Ryan LM; Rosenthal AK
    Osteoarthritis Cartilage; 2001 Apr; 9(3):189-94. PubMed ID: 11300741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate.
    Cheung HS; Kurup IV; Sallis JD; Ryan LM
    J Biol Chem; 1996 Nov; 271(45):28082-5. PubMed ID: 8910421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.
    Hirose J; Ryan LM; Masuda I
    Arthritis Rheum; 2002 Dec; 46(12):3218-29. PubMed ID: 12483726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage.
    Nguyen C; Bazin D; Daudon M; Chatron-Colliet A; Hannouche D; Bianchi A; Côme D; So A; Busso N; Busso N; Lioté F; Ea HK
    Arthritis Res Ther; 2013; 15(5):R103. PubMed ID: 24004678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate.
    Ryan LM; Rachow JW; McCarty DJ
    J Rheumatol; 1991 May; 18(5):716-20. PubMed ID: 1650841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dexamethasone promotes calcium pyrophosphate dihydrate crystal formation by articular chondrocytes.
    Fahey M; Mitton E; Muth E; Rosenthal AK
    J Rheumatol; 2009 Jan; 36(1):163-9. PubMed ID: 19132782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of phosphohydrolase activities from articular cartilage in calcium pyrophosphate deposition disease and primary osteoarthritis.
    Tenenbaum J; Muniz O; Schumacher HR; Good AE; Howell DS
    Arthritis Rheum; 1981 Mar; 24(3):492-500. PubMed ID: 6111322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite-type crystal deposition in arthritic cartilage.
    Ali SY
    Scan Electron Microsc; 1985; (Pt 4):1555-66. PubMed ID: 4095501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of articular calcium-containing crystals by synchrotron FTIR.
    Rosenthal AK; Mattson E; Gohr CM; Hirschmugl CJ
    Osteoarthritis Cartilage; 2008 Nov; 16(11):1395-402. PubMed ID: 18472285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further characterization of ATP-initiated calcification by matrix vesicles isolated from rachitic rat cartilage. Membrane perturbation by detergents and deposition of calcium pyrophosphate by rachitic matrix vesicles.
    Hsu HH; Camacho NP; Anderson HC
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):320-32. PubMed ID: 9889389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transglutaminase contributes to CPPD crystal formation in osteoarthritis.
    Heinkel D; Gohr CM; Uzuki M; Rosenthal AK
    Front Biosci; 2004 Sep; 9():3257-61. PubMed ID: 15353354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium pyrophosphate crystal deposition in hyaline cartilage. Ultrastructural analysis and implications for pathogenesis.
    Pritzker KP; Cheng PT; Renlund RC
    J Rheumatol; 1988; 15(5):828-35. PubMed ID: 2845077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles.
    Thouverey C; Bechkoff G; Pikula S; Buchet R
    Osteoarthritis Cartilage; 2009 Jan; 17(1):64-72. PubMed ID: 18603452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis.
    Liu YZ; Jackson AP; Cosgrove SD
    Osteoarthritis Cartilage; 2009 Oct; 17(10):1333-40. PubMed ID: 19447216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type II collagen levels correlate with mineralization by articular cartilage vesicles.
    Jubeck B; Muth E; Gohr CM; Rosenthal AK
    Arthritis Rheum; 2009 Sep; 60(9):2741-6. PubMed ID: 19714645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormones induce features of the hypertrophic phenotype and stimulate correlates of CPPD crystal formation in articular chondrocytes.
    Rosenthal AK; Henry LA
    J Rheumatol; 1999 Feb; 26(2):395-401. PubMed ID: 9972975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.