BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9701767)

  • 1. H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved.
    Herrero A; Barja G
    Mech Ageing Dev; 1998 Jun; 103(2):133-46. PubMed ID: 9701767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse.
    Pamplona R; Portero-Otín M; Riba D; Ledo F; Gredilla R; Herrero A; Barja G
    Aging (Milano); 1999 Feb; 11(1):44-9. PubMed ID: 10337442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon.
    Herrero A; Barja G
    Mech Ageing Dev; 1997 Nov; 98(2):95-111. PubMed ID: 9379714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial free radical production and aging in mammals and birds.
    Barja G
    Ann N Y Acad Sci; 1998 Nov; 854():224-38. PubMed ID: 9928433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging.
    Herrero A; Barja G
    Aging (Milano); 1999 Oct; 11(5):294-300. PubMed ID: 10631878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species.
    Ku HH; Brunk UT; Sohal RS
    Free Radic Biol Med; 1993 Dec; 15(6):621-7. PubMed ID: 8138188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds.
    Barja G; Cadenas S; Rojas C; Pérez-Campo R; López-Torres M
    Free Radic Res; 1994 Oct; 21(5):317-27. PubMed ID: 7842141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach.
    Perez-Campo R; López-Torres M; Cadenas S; Rojas C; Barja G
    J Comp Physiol B; 1998 Apr; 168(3):149-58. PubMed ID: 9591361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate.
    Pamplona R; Portero-Otín M; Sanz A; Ayala V; Vasileva E; Barja G
    Age (Dordr); 2005 Dec; 27(4):267-80. PubMed ID: 23598660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.
    Barja G; Herrero A
    FASEB J; 2000 Feb; 14(2):312-8. PubMed ID: 10657987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism.
    Herrero A; Barja G
    J Bioenerg Biomembr; 1997 Jun; 29(3):241-9. PubMed ID: 9298709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen peroxide production by liver mitochondria in different species.
    Sohal RS; Svensson I; Brunk UT
    Mech Ageing Dev; 1990 Apr; 53(3):209-15. PubMed ID: 2115947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial production of pro-oxidants and cellular senescence.
    Sohal RS; Brunk UT
    Mutat Res; 1992 Sep; 275(3-6):295-304. PubMed ID: 1383771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The long life of birds: the rat-pigeon comparison revisited.
    Montgomery MK; Hulbert AJ; Buttemer WA
    PLoS One; 2011; 6(8):e24138. PubMed ID: 21904609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria.
    Han D; Canali R; Rettori D; Kaplowitz N
    Mol Pharmacol; 2003 Nov; 64(5):1136-44. PubMed ID: 14573763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the free radical theory of aging in bats.
    Brunet Rossinni AK
    Ann N Y Acad Sci; 2004 Jun; 1019():506-8. PubMed ID: 15247075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of uncoupling protein in heart and muscle mitochondria of canary birds.
    Slocinska MB; Almsherqi ZA; Sluse FE; Navet R; Deng Y
    J Bioenerg Biomembr; 2010 Aug; 42(4):345-53. PubMed ID: 20686918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production.
    Montgomery MK; Hulbert AJ; Buttemer WA
    Exp Gerontol; 2012 Mar; 47(3):203-10. PubMed ID: 22123429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart.
    López-Torres M; Romero M; Barja G
    Mol Cell Endocrinol; 2000 Oct; 168(1-2):127-34. PubMed ID: 11064159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantitative measurement of H2O2 generation in isolated mitochondria.
    Barja G
    J Bioenerg Biomembr; 2002 Jun; 34(3):227-33. PubMed ID: 12171072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.