BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9701767)

  • 21. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms.
    Lambert AJ; Boysen HM; Buckingham JA; Yang T; Podlutsky A; Austad SN; Kunz TH; Buffenstein R; Brand MD
    Aging Cell; 2007 Oct; 6(5):607-18. PubMed ID: 17596208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity.
    Barja G
    J Bioenerg Biomembr; 1999 Aug; 31(4):347-66. PubMed ID: 10665525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case.
    Pamplona R; Prat J; Cadenas S; Rojas C; Pérez-Campo R; López Torres M; Barja G
    Mech Ageing Dev; 1996 Jan; 86(1):53-66. PubMed ID: 8866736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals.
    Brunet-Rossinni AK
    Mech Ageing Dev; 2004 Jan; 125(1):11-20. PubMed ID: 14706233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria.
    Kwong LK; Sohal RS
    Arch Biochem Biophys; 1998 Feb; 350(1):118-26. PubMed ID: 9466828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat.
    Pamplona R; Portero-Otín M; Requena JR; Thorpe SR; Herrero A; Barja G
    Mech Ageing Dev; 1999 Jan; 106(3):283-96. PubMed ID: 10100156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen peroxide release by mitochondria increases during aging.
    Sohal RS; Sohal BH
    Mech Ageing Dev; 1991 Feb; 57(2):187-202. PubMed ID: 1904965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies.
    Barja G
    Rejuvenation Res; 2007 Jun; 10(2):215-24. PubMed ID: 17523876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
    López-Torres M; Gredilla R; Sanz A; Barja G
    Free Radic Biol Med; 2002 May; 32(9):882-9. PubMed ID: 11978489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA.
    Giulivi C; Boveris A; Cadenas E
    Arch Biochem Biophys; 1995 Feb; 316(2):909-16. PubMed ID: 7864650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial production of oxygen free radicals in the heart muscle during the life span of the rat: peak at middle age.
    Guarnieri C; Muscari C; Caldarera CM
    EXS; 1992; 62():73-7. PubMed ID: 1333312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria.
    Gredilla R; Phaneuf S; Selman C; Kendaiah S; Leeuwenburgh C; Barja G
    Ann N Y Acad Sci; 2004 Jun; 1019():333-42. PubMed ID: 15247039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins.
    Sanz A; Caro P; Ayala V; Portero-Otin M; Pamplona R; Barja G
    FASEB J; 2006 Jun; 20(8):1064-73. PubMed ID: 16770005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of time of restriction on the decrease in mitochondrial H2O2 production and oxidative DNA damage in the heart of food-restricted rats.
    Gredilla R; López-Torres M; Barja G
    Microsc Res Tech; 2002 Nov; 59(4):273-7. PubMed ID: 12424788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of thyroid state on H2O2 production by rat liver mitochondria.
    Venditti P; De Rosa R; Di Meo S
    Mol Cell Endocrinol; 2003 Jul; 205(1-2):185-92. PubMed ID: 12890580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production.
    Christen F; Desrosiers V; Dupont-Cyr BA; Vandenberg GW; Le François NR; Tardif JC; Dufresne F; Lamarre SG; Blier PU
    Free Radic Biol Med; 2018 Feb; 116():11-18. PubMed ID: 29294390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential.
    Ku HH; Sohal RS
    Mech Ageing Dev; 1993 Nov; 72(1):67-76. PubMed ID: 8114521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extension of murine life span by overexpression of catalase targeted to mitochondria.
    Schriner SE; Linford NJ; Martin GM; Treuting P; Ogburn CE; Emond M; Coskun PE; Ladiges W; Wolf N; Van Remmen H; Wallace DC; Rabinovitch PS
    Science; 2005 Jun; 308(5730):1909-11. PubMed ID: 15879174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon.
    Barja G; Herrero A
    J Bioenerg Biomembr; 1998 Jun; 30(3):235-43. PubMed ID: 9733090
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.