BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9701821)

  • 1. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress-responsive promoters.
    Spiegelhalter F; Bremer E
    Mol Microbiol; 1998 Jul; 29(1):285-96. PubMed ID: 9701821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B.
    von Blohn C; Kempf B; Kappes RM; Bremer E
    Mol Microbiol; 1997 Jul; 25(1):175-87. PubMed ID: 11902719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline utilization by Bacillus subtilis: uptake and catabolism.
    Moses S; Sinner T; Zaprasis A; Stöveken N; Hoffmann T; Belitsky BR; Sonenshein AL; Bremer E
    J Bacteriol; 2012 Feb; 194(4):745-58. PubMed ID: 22139509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes.
    Boch J; Kempf B; Schmid R; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5121-9. PubMed ID: 8752328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis.
    Maul B; Völker U; Riethdorf S; Engelmann S; Hecker M
    Mol Gen Genet; 1995 Jul; 248(1):114-20. PubMed ID: 7651322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of new sigma K-dependent promoters using an in vitro transcription system derived from Bacillus subtilis.
    Fujita M
    Gene; 1999 Sep; 237(1):45-52. PubMed ID: 10524235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells.
    Hoffmann T; von Blohn C; Stanek A; Moses S; Barzantny H; Bremer E
    Appl Environ Microbiol; 2012 Aug; 78(16):5753-62. PubMed ID: 22685134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sigma H-directed transcription of citG in Bacillus subtilis.
    Tatti KM; Carter HL; Moir A; Moran CP
    J Bacteriol; 1989 Nov; 171(11):5928-32. PubMed ID: 2509422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.
    Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL
    J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An operon of Bacillus subtilis motility genes transcribed by the sigma D form of RNA polymerase.
    Mirel DB; Lustre VM; Chamberlin MJ
    J Bacteriol; 1992 Jul; 174(13):4197-204. PubMed ID: 1624413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential and cross-transcriptional control of duplicated genes encoding alternative sigma factors in Streptomyces ambofaciens.
    Roth V; Aigle B; Bunet R; Wenner T; Fourrier C; Decaris B; Leblond P
    J Bacteriol; 2004 Aug; 186(16):5355-65. PubMed ID: 15292136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two ResD-controlled promoters regulate ctaA expression in Bacillus subtilis.
    Paul S; Zhang X; Hulett FM
    J Bacteriol; 2001 May; 183(10):3237-46. PubMed ID: 11325953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. rpoD operon promoter used by sigma H-RNA polymerase in Bacillus subtilis.
    Carter HL; Wang LF; Doi RH; Moran CP
    J Bacteriol; 1988 Apr; 170(4):1617-21. PubMed ID: 3127379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools.
    Hoffmann T; Wensing A; Brosius M; Steil L; Völker U; Bremer E
    J Bacteriol; 2013 Feb; 195(3):510-22. PubMed ID: 23175650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a two-plasmid system for the identification of promoters recognized by RNA polymerase containing Staphylococcus aureus alternative sigma factor sigmaB.
    Homerova D; Bischoff M; Dumolin A; Kormanec J
    FEMS Microbiol Lett; 2004 Mar; 232(2):173-9. PubMed ID: 15033236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity.
    Brill J; Hoffmann T; Bleisteiner M; Bremer E
    J Bacteriol; 2011 Oct; 193(19):5335-46. PubMed ID: 21784929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
    Wise AA; Price CW
    J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T.
    Calderón MI; Vargas C; Rojo F; Iglesias-Guerra F; Csonka LN; Ventosa A; Nieto JJ
    Microbiology (Reading); 2004 Sep; 150(Pt 9):3051-3063. PubMed ID: 15347763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis.
    Nakano MM; Xia LA; Zuber P
    J Bacteriol; 1991 Sep; 173(17):5487-93. PubMed ID: 1715856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of the Bacillus subtilis "-12, -24" promoter of the levanase operon and evidence for the existence of an upstream activating sequence.
    Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G
    J Mol Biol; 1992 Jul; 226(1):85-99. PubMed ID: 1619665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.