These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 9702197)
1. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Labbé E; Silvestri C; Hoodless PA; Wrana JL; Attisano L Mol Cell; 1998 Jul; 2(1):109-20. PubMed ID: 9702197 [TBL] [Abstract][Full Text] [Related]
2. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Germain S; Howell M; Esslemont GM; Hill CS Genes Dev; 2000 Feb; 14(4):435-51. PubMed ID: 10691736 [TBL] [Abstract][Full Text] [Related]
3. Characterization of human FAST-1, a TGF beta and activin signal transducer. Zhou S; Zawel L; Lengauer C; Kinzler KW; Vogelstein B Mol Cell; 1998 Jul; 2(1):121-7. PubMed ID: 9702198 [TBL] [Abstract][Full Text] [Related]
4. Positive and negative regulation of the transforming growth factor beta/activin target gene goosecoid by the TFII-I family of transcription factors. Ku M; Sokol SY; Wu J; Tussie-Luna MI; Roy AL; Hata A Mol Cell Biol; 2005 Aug; 25(16):7144-57. PubMed ID: 16055724 [TBL] [Abstract][Full Text] [Related]
5. Smad3 inhibits transforming growth factor-beta and activin signaling by competing with Smad4 for FAST-2 binding. Nagarajan RP; Liu J; Chen Y J Biol Chem; 1999 Oct; 274(44):31229-35. PubMed ID: 10531318 [TBL] [Abstract][Full Text] [Related]
6. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Kato Y; Habas R; Katsuyama Y; Näär AM; He X Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the functional difference between Smad2 and Smad3 in FAST-2 (forkhead activin signal transducer-2)-mediated transcription. Nagarajan RP; Chen Y Biochem J; 2000 Aug; 350 Pt 1(Pt 1):253-9. PubMed ID: 10926851 [TBL] [Abstract][Full Text] [Related]
8. Transforming growth factor-beta inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2.1 and HNF-3 transcription factors. Li C; Zhu NL; Tan RC; Ballard PL; Derynck R; Minoo P J Biol Chem; 2002 Oct; 277(41):38399-408. PubMed ID: 12161428 [TBL] [Abstract][Full Text] [Related]
9. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. Yeo CY; Chen X; Whitman M J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623 [TBL] [Abstract][Full Text] [Related]
10. c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Pessah M; Prunier C; Marais J; Ferrand N; Mazars A; Lallemand F; Gauthier JM; Atfi A Proc Natl Acad Sci U S A; 2001 May; 98(11):6198-203. PubMed ID: 11371641 [TBL] [Abstract][Full Text] [Related]
11. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Candia AF; Watabe T; Hawley SH; Onichtchouk D; Zhang Y; Derynck R; Niehrs C; Cho KW Development; 1997 Nov; 124(22):4467-80. PubMed ID: 9409665 [TBL] [Abstract][Full Text] [Related]
12. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Dennler S; Huet S; Gauthier JM Oncogene; 1999 Feb; 18(8):1643-8. PubMed ID: 10102636 [TBL] [Abstract][Full Text] [Related]
13. Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. Shi X; Bai S; Li L; Cao X J Biol Chem; 2001 Jan; 276(1):850-5. PubMed ID: 11042172 [TBL] [Abstract][Full Text] [Related]
14. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Xu W; Angelis K; Danielpour D; Haddad MM; Bischof O; Campisi J; Stavnezer E; Medrano EE Proc Natl Acad Sci U S A; 2000 May; 97(11):5924-9. PubMed ID: 10811875 [TBL] [Abstract][Full Text] [Related]
15. Smad4 and FAST-1 in the assembly of activin-responsive factor. Chen X; Weisberg E; Fridmacher V; Watanabe M; Naco G; Whitman M Nature; 1997 Sep; 389(6646):85-9. PubMed ID: 9288972 [TBL] [Abstract][Full Text] [Related]
16. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698 [TBL] [Abstract][Full Text] [Related]
17. Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. Alliston T; Ko TC; Cao Y; Liang YY; Feng XH; Chang C; Derynck R J Biol Chem; 2005 Jun; 280(25):24227-37. PubMed ID: 15849193 [TBL] [Abstract][Full Text] [Related]
18. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. Dennler S; Itoh S; Vivien D; ten Dijke P; Huet S; Gauthier JM EMBO J; 1998 Jun; 17(11):3091-100. PubMed ID: 9606191 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Pierreux CE; Nicolás FJ; Hill CS Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002 [TBL] [Abstract][Full Text] [Related]
20. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. Feng XH; Lin X; Derynck R EMBO J; 2000 Oct; 19(19):5178-93. PubMed ID: 11013220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]