These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9702198)
1. Characterization of human FAST-1, a TGF beta and activin signal transducer. Zhou S; Zawel L; Lengauer C; Kinzler KW; Vogelstein B Mol Cell; 1998 Jul; 2(1):121-7. PubMed ID: 9702198 [TBL] [Abstract][Full Text] [Related]
2. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Labbé E; Silvestri C; Hoodless PA; Wrana JL; Attisano L Mol Cell; 1998 Jul; 2(1):109-20. PubMed ID: 9702197 [TBL] [Abstract][Full Text] [Related]
3. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Germain S; Howell M; Esslemont GM; Hill CS Genes Dev; 2000 Feb; 14(4):435-51. PubMed ID: 10691736 [TBL] [Abstract][Full Text] [Related]
4. Smad4 and FAST-1 in the assembly of activin-responsive factor. Chen X; Weisberg E; Fridmacher V; Watanabe M; Naco G; Whitman M Nature; 1997 Sep; 389(6646):85-9. PubMed ID: 9288972 [TBL] [Abstract][Full Text] [Related]
5. Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes. Howell M; Itoh F; Pierreux CE; Valgeirsdottir S; Itoh S; ten Dijke P; Hill CS Dev Biol; 1999 Oct; 214(2):354-69. PubMed ID: 10525340 [TBL] [Abstract][Full Text] [Related]
6. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. Yeo CY; Chen X; Whitman M J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623 [TBL] [Abstract][Full Text] [Related]
7. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Kato Y; Habas R; Katsuyama Y; Näär AM; He X Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862 [TBL] [Abstract][Full Text] [Related]
8. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Liu F; Pouponnot C; Massagué J Genes Dev; 1997 Dec; 11(23):3157-67. PubMed ID: 9389648 [TBL] [Abstract][Full Text] [Related]
9. Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells. Zhou S; Buckhaults P; Zawel L; Bunz F; Riggins G; Dai JL; Kern SE; Kinzler KW; Vogelstein B Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2412-6. PubMed ID: 9482899 [TBL] [Abstract][Full Text] [Related]
10. Regulation and actions of Smad7 in the modulation of activin, inhibin, and transforming growth factor-beta signaling in anterior pituitary cells. Bilezikjian LM; Corrigan AZ; Blount AL; Chen Y; Vale WW Endocrinology; 2001 Mar; 142(3):1065-72. PubMed ID: 11181520 [TBL] [Abstract][Full Text] [Related]
11. A mouse homologue of FAST-1 transduces TGF beta superfamily signals and is expressed during early embryogenesis. Weisberg E; Winnier GE; Chen X; Farnsworth CL; Hogan BL; Whitman M Mech Dev; 1998 Dec; 79(1-2):17-27. PubMed ID: 10349617 [TBL] [Abstract][Full Text] [Related]
12. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. De Bosscher K; Hill CS; Nicolás FJ Biochem J; 2004 Apr; 379(Pt 1):209-16. PubMed ID: 14715079 [TBL] [Abstract][Full Text] [Related]
13. Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells. Bondestam J; Kaivo-oja N; Kallio J; Groome N; Hydén-Granskog C; Fujii M; Moustakas A; Jalanko A; ten Dijke P; Ritvos O Mol Cell Endocrinol; 2002 Sep; 195(1-2):79-88. PubMed ID: 12354674 [TBL] [Abstract][Full Text] [Related]
14. A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements. Howell M; Inman GJ; Hill CS Development; 2002 Jun; 129(12):2823-34. PubMed ID: 12050132 [TBL] [Abstract][Full Text] [Related]
15. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals. Liu B; Dou CL; Prabhu L; Lai E Mol Cell Biol; 1999 Jan; 19(1):424-30. PubMed ID: 9858566 [TBL] [Abstract][Full Text] [Related]
16. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Lagna G; Hata A; Hemmati-Brivanlou A; Massagué J Nature; 1996 Oct; 383(6603):832-6. PubMed ID: 8893010 [TBL] [Abstract][Full Text] [Related]
18. A transcriptional partner for MAD proteins in TGF-beta signalling. Chen X; Rubock MJ; Whitman M Nature; 1996 Oct; 383(6602):691-6. PubMed ID: 8878477 [TBL] [Abstract][Full Text] [Related]
19. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers. Yanagisawa K; Uchida K; Nagatake M; Masuda A; Sugiyama M; Saito T; Yamaki K; Takahashi T; Osada H Oncogene; 2000 May; 19(19):2305-11. PubMed ID: 10822381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]