These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9702711)

  • 1. Quantification of myocardial perfusion by MRI after coronary occlusion.
    Vallée JP; Sostman HD; MacFall JR; DeGrado TR; Zhang J; Sebbag L; Cobb FR; Wheeler T; Hedlund LW; Turkington TG; Spritzer CE; Coleman RE
    Magn Reson Med; 1998 Aug; 40(2):287-97. PubMed ID: 9702711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of myocardial blood flow using model based analysis of first-pass perfusion MRI: extraction fraction of Gd-DTPA varies with myocardial blood flow in human myocardium.
    Ishida M; Ichihara T; Nagata M; Ishida N; Takase S; Kurita T; Ito M; Takeda K; Sakuma H
    Magn Reson Med; 2011 Nov; 66(5):1391-9. PubMed ID: 21469192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantitative evaluation of myocardial perfusion with ultrafast magnetic resonance tomography].
    Machnig T; Koroneos A; Engels G; Bachmann K; Simm C; Wilke N; Ellermann J; Zhang J; Ya X; Merkel H
    Z Kardiol; 1994 Nov; 83(11):840-50. PubMed ID: 7825374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation.
    Vogel R; Indermühle A; Reinhardt J; Meier P; Siegrist PT; Namdar M; Kaufmann PA; Seiler C
    J Am Coll Cardiol; 2005 Mar; 45(5):754-62. PubMed ID: 15734622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI quantitative myocardial perfusion with compartmental analysis: a rest and stress study.
    Vallée JP; Sostman HD; MacFall JR; Wheeler T; Hedlund LW; Spritzer CE; Coleman RE
    Magn Reson Med; 1997 Dec; 38(6):981-9. PubMed ID: 9402200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT.
    Ishida M; Kitagawa K; Ichihara T; Natsume T; Nakayama R; Nagasawa N; Kubooka M; Ito T; Uno M; Goto Y; Nagata M; Sakuma H
    J Cardiovasc Comput Tomogr; 2016; 10(3):207-14. PubMed ID: 26851149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET.
    Tomiyama Y; Manabe O; Oyama-Manabe N; Naya M; Sugimori H; Hirata K; Mori Y; Tsutsui H; Kudo K; Tamaki N; Katoh C
    J Magn Reson Imaging; 2015 Sep; 42(3):754-62. PubMed ID: 25557072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia.
    Wilke N; Simm C; Zhang J; Ellermann J; Ya X; Merkle H; Path G; Lüdemann H; Bache RJ; Uğurbil K
    Magn Reson Med; 1993 Apr; 29(4):485-97. PubMed ID: 8464365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease.
    Diesbourg LD; Prato FS; Wisenberg G; Drost DJ; Marshall TP; Carroll SE; O'Neill B
    Magn Reson Med; 1992 Feb; 23(2):239-53. PubMed ID: 1549039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.
    Natsume T; Ishida M; Kitagawa K; Nagata M; Sakuma H; Ichihara T
    Magn Reson Imaging; 2015 Nov; 33(9):1059-1065. PubMed ID: 26117690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model.
    Schuster A; Sinclair M; Zarinabad N; Ishida M; van den Wijngaard JP; Paul M; van Horssen P; Hussain ST; Perera D; Schaeffter T; Spaan JA; Siebes M; Nagel E; Chiribiri A
    Eur Heart J Cardiovasc Imaging; 2015 Oct; 16(10):1082-92. PubMed ID: 25812572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison of [13N]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres.
    Bol A; Melin JA; Vanoverschelde JL; Baudhuin T; Vogelaers D; De Pauw M; Michel C; Luxen A; Labar D; Cogneau M
    Circulation; 1993 Feb; 87(2):512-25. PubMed ID: 8425298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of myocardial perfusion with FAST sequence and Gd bolus in patients with normal cardiac function.
    Vallée JP; Lazeyras F; Kasuboski L; Chatelain P; Howarth N; Righetti A; Didier D
    J Magn Reson Imaging; 1999 Feb; 9(2):197-203. PubMed ID: 10077013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of myocardial perfusion in single-vessel coronary artery disease: implications for transmural assessment of myocardial perfusion.
    Keijer JT; van Rossum AC; Wilke N; van Eenige MJ; Jerosch-Herold M; Bronzwaer JG; Visser CA
    J Cardiovasc Magn Reson; 2000; 2(3):189-200. PubMed ID: 11545116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography.
    DeGrado TR; Hanson MW; Turkington TG; Delong DM; Brezinski DA; Vallée JP; Hedlund LW; Zhang J; Cobb F; Sullivan MJ; Coleman RE
    J Nucl Cardiol; 1996; 3(6 Pt 1):494-507. PubMed ID: 8989674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans.
    Pärkkä JP; Niemi P; Saraste A; Koskenvuo JW; Komu M; Oikonen V; Toikka JO; Kiviniemi TO; Knuuti J; Sakuma H; Hartiala JJ
    Magn Reson Med; 2006 Apr; 55(4):772-9. PubMed ID: 16508915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gd-DTPA bolus tracking in the myocardium using T1 fast acquisition relaxation mapping (T1 FARM).
    Bellamy DD; Pereira RS; McKenzie CA; Prato FS; Drost DJ; Sykes J; Wisenberg G
    Magn Reson Med; 2001 Sep; 46(3):555-64. PubMed ID: 11550249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium.
    Tong CY; Prato FS; Wisenberg G; Lee TY; Carroll E; Sandler D; Wills J; Drost D
    Magn Reson Med; 1993 Sep; 30(3):337-46. PubMed ID: 8412605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The partition coefficient of Gd-DTPA reflects maintained tissue viability in a canine model of chronic significant coronary stenosis.
    Lekx KS; Prato FS; Sykes J; Wisenberg G
    J Cardiovasc Magn Reson; 2004; 6(1):33-42. PubMed ID: 15054927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method.
    Christian TF; Aletras AH; Arai AE
    J Magn Reson Imaging; 2008 Jun; 27(6):1271-7. PubMed ID: 18421683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.