These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 9703028)

  • 1. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana.
    Wang XM; Terman JR; Martin GF
    J Comp Neurol; 1998 Aug; 398(1):83-97. PubMed ID: 9703028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1991 Nov; 313(1):103-12. PubMed ID: 1761748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1989 Jan; 279(3):368-81. PubMed ID: 2465321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana).
    Wang XM; Qin YQ; Terman JR; Martin GF
    Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for growth of supraspinal axons through the lesion after transection of the thoracic spinal cord in the developing opossum Didelphis virginiana.
    Wang XM; Terman JR; Martin GF
    J Comp Neurol; 1996 Jul; 371(1):104-15. PubMed ID: 8835721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.
    Martin GF; Terman JR; Wang XM
    Brain Res Bull; 2000 Nov; 53(5):677-87. PubMed ID: 11165803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental plasticity of reticulospinal and vestibulospinal axons in the north American opossum, Didelphis virginiana.
    Wang XM; Qin YQ; Xu XM; Martin GF
    J Comp Neurol; 1994 Nov; 349(2):288-302. PubMed ID: 7860784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1993 Sep; 123(1):118-32. PubMed ID: 8405272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates.
    Wang XM; Basso DM; Terman JR; Bresnahan JC; Martin GF
    Exp Neurol; 1998 May; 151(1):50-69. PubMed ID: 9582254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica).
    Fry EJ; Stolp HB; Lane MA; Dziegielewska KM; Saunders NR
    J Comp Neurol; 2003 Nov; 466(3):422-44. PubMed ID: 14556298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of rubrospinal neurons to axotomy at different stages of development in the North American opossum.
    Xu XM; Martin GF
    J Neurotrauma; 1992; 9(2):93-105. PubMed ID: 1383556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1999 Jan; 112(1):65-77. PubMed ID: 9974160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of dorsal spinocerebellar axons through a lesion of their spinal pathway during early development in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1996 May; 93(1-2):33-48. PubMed ID: 8804690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Brain Res Bull; 2000 Dec; 53(6):845-55. PubMed ID: 11179852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of axotomized rubrospinal neurons by brain-derived neurotrophic factor (BDNF) in the developing opossum, Didelphis virginiana.
    Wang XM; Terman JR; Martin GF
    Brain Res Dev Brain Res; 1999 Dec; 118(1-2):177-84. PubMed ID: 10611517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal sprouting and frank regeneration in the lizard tail spinal cord: correlation between changes in synaptic circuitry and axonal growth.
    Duffy MT; Liebich DR; Garner LK; Hawrych A; Simpson SB; Davis BM
    J Comp Neurol; 1992 Feb; 316(3):363-74. PubMed ID: 1577990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell death of corticospinal neurons is induced by axotomy before but not after innervation of spinal targets.
    Merline M; Kalil K
    J Comp Neurol; 1990 Jun; 296(3):506-16. PubMed ID: 2358550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.