BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9703320)

  • 1. Lactate production in pancreatic islets.
    Tamarit-Rodriguez J; Idahl LA; Giné E; Alcazar O; Sehlin J
    Diabetes; 1998 Aug; 47(8):1219-23. PubMed ID: 9703320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically obese rats with (SHR/N-cp) and without diabetes (LA/N-cp) share abnormal islet responses to glucose.
    Timmers KI; Voyles NR; Recant L
    Metabolism; 1992 Oct; 41(10):1125-33. PubMed ID: 1406299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets.
    Sweet IR; Li G; Najafi H; Berner D; Matschinsky FM
    Am J Physiol; 1996 Sep; 271(3 Pt 1):E606-25. PubMed ID: 8843758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of adrenalectomy on the development of a pancreatic islet lesion in fa/fa rats.
    Kibenge MT; Chan CB
    Diabetologia; 1996 Feb; 39(2):190-8. PubMed ID: 8635671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposite effects of 5-hydroxytryptophan and 5-hydroxytryptamine on the function of microdissected ob/ob-mouse pancreatic islets.
    Lindström P; Sehlin J
    Diabetologia; 1983 Jan; 24(1):52-7. PubMed ID: 6337907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interference of D-mannoheptulose with D-glucose phosphorylation, metabolism and functional effects: comparison between liver, parotid cells and pancreatic islets.
    Scruel O; Vanhoutte C; Sener A; Malaisse WJ
    Mol Cell Biochem; 1998 Oct; 187(1-2):113-20. PubMed ID: 9788748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator.
    Johnson D; Shepherd RM; Gill D; Gorman T; Smith DM; Dunne MJ
    Diabetes; 2007 Jun; 56(6):1694-702. PubMed ID: 17360975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold for glucose-stimulated insulin secretion in pancreatic islets of genetically obese (ob/ob) mice is abnormally low.
    Chen NG; Tassava TM; Romsos DR
    J Nutr; 1993 Sep; 123(9):1567-74. PubMed ID: 8360782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 9-Aminoacridine- and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties.
    Henquin JC; Meissner HP; Preissler M
    Biochim Biophys Acta; 1979 Nov; 587(4):579-92. PubMed ID: 389293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells.
    Patanè G; Piro S; Rabuazzo AM; Anello M; Vigneri R; Purrello F
    Diabetes; 2000 May; 49(5):735-40. PubMed ID: 10905481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term effects of a high glucose concentration in vitro on the oxidative metabolism and insulin production of isolated rat pancreatic islets.
    Svensson C; Hellerström C
    Metabolism; 1991 May; 40(5):513-8. PubMed ID: 2023537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of glucose-induced changes in electrical activity, insulin release, lactate output and potassium permeability between normal and ob/ob mouse islets: effects of cooling.
    Scott AM; Dawson CM; Gonçalves AA
    J Endocrinol; 1985 Nov; 107(2):265-73. PubMed ID: 3906013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consumption of a glucose diet enhances the sensitivity of pancreatic islets from adrenalectomized genetically obese (ob/ob) mice to glucose-induced insulin secretion.
    Mistry AM; Chen NG; Lee YS; Romsos DR
    J Nutr; 1995 Mar; 125(3):503-11. PubMed ID: 7876925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of iodoacetate, mannoheptulose and 3-O-methyl glucose on the secretory function and metabolism of isolated pancreatic islets.
    Zawalich WS; Pagliara AS; Matschinsky FM
    Endocrinology; 1977 May; 100(5):1276-83. PubMed ID: 321218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of D-mannoheptulose and its hexaacetate ester on D-glucose metabolism and insulinotropic action in rat pancreatic islets.
    Sener A; Kadiata MM; Olivares E; Malaisse WJ
    Diabetologia; 1998 Sep; 41(9):1109-13. PubMed ID: 9754831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential metabolic requirement for initiation and augmentation of insulin release by glucose: a study with rat pancreatic islets.
    Ishihara F; Aizawa T; Taguchi N; Sato Y; Hashizume K
    J Endocrinol; 1994 Dec; 143(3):497-503. PubMed ID: 7836895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment by cytochalasin B of the inhibitory action of D-mannoheptulose upon D-glucose metabolism in rat pancreatic islets.
    Courtois P; Sener A; Malaisse WJ
    Int J Mol Med; 2000 Apr; 5(4):385-8. PubMed ID: 10719055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Islet lysosomal enzyme activities and glucose-induced insulin secretion: effects of mannoheptulose, 2-deoxyglucose and clonidine.
    Salehi AA; Lundquist I
    Pharmacology; 1993; 46(3):155-63. PubMed ID: 8441762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoenolpyruvate in rat pancreatic islets: a possible intracellular trigger of insulin release?
    Sugden MC; Ashcroft SJ
    Diabetologia; 1977 Sep; 13(5):481-6. PubMed ID: 332570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochalasin B-induced impariment of glucose metabolism in islets of Langerhans.
    Levy J; Herchuelz A; Sener A; Malaisse-Lagae F; Malaisse WJ
    Endocrinology; 1976 Feb; 98(2):429-37. PubMed ID: 765121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.