These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9704287)

  • 1. Phantom standards with temperature- and field-independent relaxation rates for magnetic resonance imaging.
    Kellar KE; Briley-Saebø K
    Invest Radiol; 1998 Aug; 33(8):472-9. PubMed ID: 9704287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement effects and relaxivities of gadolinium-DTPA at 1.5 versus 3 Tesla: a phantom study.
    Sasaki M; Shibata E; Kanbara Y; Ehara S
    Magn Reson Med Sci; 2005; 4(3):145-9. PubMed ID: 16462135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A liver-mimicking MRI phantom for thermal ablation experiments.
    Bazrafshan B; Hübner F; Farshid P; Larson MC; Vogel V; Mäntele W; Vogl TJ
    Med Phys; 2011 May; 38(5):2674-84. PubMed ID: 21776804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.
    Rohrer M; Bauer H; Mintorovitch J; Requardt M; Weinmann HJ
    Invest Radiol; 2005 Nov; 40(11):715-24. PubMed ID: 16230904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T.
    Shen Y; Goerner FL; Snyder C; Morelli JN; Hao D; Hu D; Li X; Runge VM
    Invest Radiol; 2015 May; 50(5):330-8. PubMed ID: 25658049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of MRI phantom equivalent to human tissues for 3.0-T MRI.
    Hattori K; Ikemoto Y; Takao W; Ohno S; Harimoto T; Kanazawa S; Oita M; Shibuya K; Kuroda M; Kato H
    Med Phys; 2013 Mar; 40(3):032303. PubMed ID: 23464335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: Human tissue-equivalent MRI phantom preparation for 3 and 7 Tesla.
    Woletz M; Roat S; Hummer A; Tik M; Windischberger C
    Med Phys; 2021 Aug; 48(8):4387-4394. PubMed ID: 34018625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a phantom compatible for MRI and hyperthermia using carrageenan gel-relationship between T1 and T2 values and NaCl concentration.
    Yoshida A; Kato H; Kuroda M; Hanamoto K; Yoshimura K; Shibuya K; Kawasaki S; Tsunoda M; Kanazawa S; Hiraki Y
    Int J Hyperthermia; 2004 Dec; 20(8):803-14. PubMed ID: 15764343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Gd-EOB-DTPA on T1 dependence of the proton density fat fraction using magnetic resonance spectroscopy.
    Hayashi T; Fukuzawa K; Kondo H; Onodera H; Tojo R; Yano S; Miyati T; Kotoku J; Okamoto T; Toyoda K; Oba H
    Radiol Phys Technol; 2018 Sep; 11(3):338-344. PubMed ID: 29858768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance-the T
    Captur G; Gatehouse P; Keenan KE; Heslinga FG; Bruehl R; Prothmann M; Graves MJ; Eames RJ; Torlasco C; Benedetti G; Donovan J; Ittermann B; Boubertakh R; Bathgate A; Royet C; Pang W; Nezafat R; Salerno M; Kellman P; Moon JC
    J Cardiovasc Magn Reson; 2016 Sep; 18(1):58. PubMed ID: 27660042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An MRI phantom material for quantitative relaxometry.
    Kraft KA; Fatouros PP; Clarke GD; Kishore PR
    Magn Reson Med; 1987 Dec; 5(6):555-62. PubMed ID: 3437816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMRD investigation of DyDTPA- and GdDTPA-labeled starch particles. Selection of a suitable suspension medium and influence of the starch matrix on relaxivity.
    Fossheim SL; Spiller M; Kellar KE
    Invest Radiol; 1999 Apr; 34(4):287-95. PubMed ID: 10196721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agarose as a tissue equivalent phantom material for NMR imaging.
    Mitchell MD; Kundel HL; Axel L; Joseph PM
    Magn Reson Imaging; 1986; 4(3):263-6. PubMed ID: 3669940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid T1 value phantom reproduction at scan room temperature.
    Yamashiro A; Kobayashi M; Saito T
    J Appl Clin Med Phys; 2019 Jul; 20(7):166-175. PubMed ID: 31179645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field strength dependence of MRI contrast enhancement: phantom measurements and application to dynamic breast imaging.
    Hittmair K; Turetschek K; Gomiscek G; Stiglbauer R; Schurawitzki H
    Br J Radiol; 1996 Mar; 69(819):215-20. PubMed ID: 8800864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lanthanide-EDTA doped agarose gels for use in NMR imaging phantoms.
    Waiter GD; Foster MA
    Magn Reson Imaging; 1997; 15(8):929-38. PubMed ID: 9322212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition of MRI phantom equivalent to human tissues.
    Kato H; Kuroda M; Yoshimura K; Yoshida A; Hanamoto K; Kawasaki S; Shibuya K; Kanazawa S
    Med Phys; 2005 Oct; 32(10):3199-208. PubMed ID: 16279073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Gd-EOB-DTPA on proton density fat fraction using the six-echo Dixon method in 3 Tesla magnetic resonance imaging.
    Hayashi T; Fukuzawa K; Kondo H; Onodera H; Toyotaka S; Tojo R; Yano S; Tano M; Miyati T; Kotoku J; Okamoto T; Toyoda K; Oba H
    Radiol Phys Technol; 2017 Dec; 10(4):483-488. PubMed ID: 28895045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a tissue-equivalent MRI phantom using carrageenan gel.
    Yoshimura K; Kato H; Kuroda M; Yoshida A; Hanamoto K; Tanaka A; Tsunoda M; Kanazawa S; Shibuya K; Kawasaki S; Hiraki Y
    Magn Reson Med; 2003 Nov; 50(5):1011-7. PubMed ID: 14587012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR thermometry near metallic devices using multispectral imaging.
    Weber H; Taviani V; Yoon D; Ghanouni P; Pauly KB; Hargreaves BA
    Magn Reson Med; 2017 Mar; 77(3):1162-1169. PubMed ID: 26991803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.