BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9704408)

  • 21. Nucleic acid-binding properties of the Xenopus oocyte Y box protein mRNP3+4.
    Murray MT
    Biochemistry; 1994 Nov; 33(46):13910-7. PubMed ID: 7524668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translational control by CPEB: a means to the end.
    Mendez R; Richter JD
    Nat Rev Mol Cell Biol; 2001 Jul; 2(7):521-9. PubMed ID: 11433366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition.
    Matsumoto K; Meric F; Wolffe AP
    J Biol Chem; 1996 Sep; 271(37):22706-12. PubMed ID: 8798444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation.
    Padmanabhan K; Richter JD
    Genes Dev; 2006 Jan; 20(2):199-209. PubMed ID: 16418484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1alpha mRNA 3'-UTR and modulate HIF-1alpha protein expression.
    Hägele S; Kühn U; Böning M; Katschinski DM
    Biochem J; 2009 Jan; 417(1):235-46. PubMed ID: 18752464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline.
    Kadyrova LY; Habara Y; Lee TH; Wharton RP
    Development; 2007 Apr; 134(8):1519-27. PubMed ID: 17360772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interference with interaction between eukaryotic translation initiation factor 4G and poly(A)-binding protein in Xenopus oocytes leads to inhibition of polyadenylated mRNA translation and oocyte maturation.
    Wakiyama M; Honkura N; Miura KI
    J Biochem; 2001 Dec; 130(6):737-40. PubMed ID: 11726272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xtr, a plural tudor domain-containing protein, coexists with FRGY2 both in cytoplasmic mRNP particle and germ plasm in Xenopus embryo: its possible role in translational regulation of maternal mRNAs.
    Golam Mostafa M; Sugimoto T; Hiyoshi M; Kawasaki H; Kubo H; Matsumoto K; Abe S; Takamune K
    Dev Growth Differ; 2009 Aug; 51(6):595-605. PubMed ID: 21314676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation.
    Bader AG; Vogt PK
    Mol Cell Biol; 2005 Mar; 25(6):2095-106. PubMed ID: 15743808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.
    Sheets MD; Fox CA; Dowdle ME; Blaser SI; Chung A; Park S
    Adv Exp Med Biol; 2017; 953():49-82. PubMed ID: 27975270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promoter control of translation in Xenopus oocytes.
    Gunkel N; Braddock M; Thorburn AM; Muckenthaler M; Kingsman AJ; Kingsman SM
    Nucleic Acids Res; 1995 Feb; 23(3):405-12. PubMed ID: 7885836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer.
    Minshall N; Standart N
    Nucleic Acids Res; 2004; 32(4):1325-34. PubMed ID: 14982957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus.
    Stebbins-Boaz B; Hake LE; Richter JD
    EMBO J; 1996 May; 15(10):2582-92. PubMed ID: 8665866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses.
    Wu L; Wells D; Tay J; Mendis D; Abbott MA; Barnitt A; Quinlan E; Heynen A; Fallon JR; Richter JD
    Neuron; 1998 Nov; 21(5):1129-39. PubMed ID: 9856468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation.
    Charlesworth A; Wilczynska A; Thampi P; Cox LL; MacNicol AM
    EMBO J; 2006 Jun; 25(12):2792-801. PubMed ID: 16763568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A combinatorial code for CPE-mediated translational control.
    Piqué M; López JM; Foissac S; Guigó R; Méndez R
    Cell; 2008 Feb; 132(3):434-48. PubMed ID: 18267074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes.
    Wormington M; Searfoss AM; Hurney CA
    EMBO J; 1996 Feb; 15(4):900-9. PubMed ID: 8631310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm.
    Dahan N; Choder M
    Biochim Biophys Acta; 2013 Jan; 1829(1):169-73. PubMed ID: 22982191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division.
    Groisman I; Huang YS; Mendez R; Cao Q; Theurkauf W; Richter JD
    Cell; 2000 Oct; 103(3):435-47. PubMed ID: 11081630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translational control of the embryonic cell cycle.
    Groisman I; Jung MY; Sarkissian M; Cao Q; Richter JD
    Cell; 2002 May; 109(4):473-83. PubMed ID: 12086604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.