BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9705288)

  • 1. Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity.
    Winkler DG; Cutler RE; Drugan JK; Campbell S; Morrison DK; Cooper JA
    J Biol Chem; 1998 Aug; 273(34):21578-84. PubMed ID: 9705288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.
    Tran TH; Chan AH; Young LC; Bindu L; Neale C; Messing S; Dharmaiah S; Taylor T; Denson JP; Esposito D; Nissley DV; Stephen AG; McCormick F; Simanshu DK
    Nat Commun; 2021 Feb; 12(1):1176. PubMed ID: 33608534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the amino acid residue at position 31 of the c-Ha-Ras protein with Raf-1 and RalGDS.
    Shirouzu M; Morinaka K; Koyama S; Hu CD; Hori-Tamura N; Okada T; Kariya K; Kataoka T; Kikuchi A; Yokoyama S
    J Biol Chem; 1998 Mar; 273(13):7737-42. PubMed ID: 9516482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct Raf domains mediate interaction with Ras.
    Brtva TR; Drugan JK; Ghosh S; Terrell RS; Campbell-Burk S; Bell RM; Der CJ
    J Biol Chem; 1995 Apr; 270(17):9809-12. PubMed ID: 7730360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila.
    Cutler RE; Morrison DK
    EMBO J; 1997 Apr; 16(8):1953-60. PubMed ID: 9155021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation diffusion facilitator proteins modulate Raf-1 activity.
    Jirakulaporn T; Muslin AJ
    J Biol Chem; 2004 Jun; 279(26):27807-15. PubMed ID: 15096503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the 14-3-3 binding site within the B-Raf kinase domain uncouples catalytic activity from PC12 cell differentiation.
    MacNicol MC; Muslin AJ; MacNicol AM
    J Biol Chem; 2000 Feb; 275(6):3803-9. PubMed ID: 10660530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain.
    Clark GJ; Drugan JK; Rossman KL; Carpenter JW; Rogers-Graham K; Fu H; Der CJ; Campbell SL
    J Biol Chem; 1997 Aug; 272(34):20990-3. PubMed ID: 9261098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases.
    Okada T; Hu CD; Jin TG; Kariya K; Yamawaki-Kataoka Y; Kataoka T
    Mol Cell Biol; 1999 Sep; 19(9):6057-64. PubMed ID: 10454553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions.
    Williams JG; Drugan JK; Yi GS; Clark GJ; Der CJ; Campbell SL
    J Biol Chem; 2000 Jul; 275(29):22172-9. PubMed ID: 10777480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine.
    Improta-Brears T; Ghosh S; Bell RM
    Mol Cell Biochem; 1999 Aug; 198(1-2):171-8. PubMed ID: 10497893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of amino acids mediating Ras binding from noninteracting residues affecting raf activation by double mutant analysis.
    Jaitner BK; Becker J; Linnemann T; Herrmann C; Wittinghofer A; Block C
    J Biol Chem; 1997 Nov; 272(47):29927-33. PubMed ID: 9368069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins.
    Terada T; Ito Y; Shirouzu M; Tateno M; Hashimoto K; Kigawa T; Ebisuzaki T; Takio K; Shibata T; Yokoyama S; Smith BO; Laue ED; Cooper JA
    J Mol Biol; 1999 Feb; 286(1):219-32. PubMed ID: 9931261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation.
    Daub M; Jöckel J; Quack T; Weber CK; Schmitz F; Rapp UR; Wittinghofer A; Block C
    Mol Cell Biol; 1998 Nov; 18(11):6698-710. PubMed ID: 9774683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association.
    Yip-Schneider MT; Miao W; Lin A; Barnard DS; Tzivion G; Marshall MS
    Biochem J; 2000 Oct; 351(Pt 1):151-9. PubMed ID: 10998357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner.
    Michaud NR; Fabian JR; Mathes KD; Morrison DK
    Mol Cell Biol; 1995 Jun; 15(6):3390-7. PubMed ID: 7760835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Raf/MAPK signaling in Xenopus oocyte extracts by Raf-1-specific peptides.
    Radziwill G; Steinhusen U; Aitken A; Moelling K
    Biochem Biophys Res Commun; 1996 Oct; 227(1):20-6. PubMed ID: 8858097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the site of inhibition of mitogenic signaling by oncogenic ras-p21 by a ras effector peptide.
    Chie L; Friedman FK; Kung HF; Lin MC; Chung D; Pincus MR
    J Protein Chem; 2002 Jul; 21(5):367-70. PubMed ID: 12206511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1.
    Sasaki A; Taketomi T; Kato R; Saeki K; Nonami A; Sasaki M; Kuriyama M; Saito N; Shibuya M; Yoshimura A
    Nat Cell Biol; 2003 May; 5(5):427-32. PubMed ID: 12717443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determinants of Ras-Raf interaction analyzed in live cells.
    Bondeva T; Balla A; Várnai P; Balla T
    Mol Biol Cell; 2002 Jul; 13(7):2323-33. PubMed ID: 12134072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.