BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9705449)

  • 1. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR; Dizio P
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV; DiZio P; Lackner JR
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congenitally blind individuals rapidly adapt to coriolis force perturbations of their reaching movements.
    DiZio P; Lackner JR
    J Neurophysiol; 2000 Oct; 84(4):2175-80. PubMed ID: 11024106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation in a rotating artificial gravity environment.
    Lackner JR; DiZio P
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):194-202. PubMed ID: 9795214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects.
    DiZio P; Lackner JR
    J Neurophysiol; 2001 Feb; 85(2):784-9. PubMed ID: 11160512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid adaptation to Coriolis force perturbations of voluntary body sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2028-2041. PubMed ID: 30943090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P; Lackner JR
    J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation to rotating artificial gravity environments.
    Lackner JR; DiZio PA
    J Vestib Res; 2003; 13(4-6):321-30. PubMed ID: 15096675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of arm reaching movements during voluntary and passive rotation of the torso.
    Bortolami SB; Pigeon P; Dizio P; Lackner JR
    Exp Brain Res; 2008 Jun; 187(4):509-23. PubMed ID: 18330550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.
    Bourdin C; Gauthier G; Blouin J; Vercher JL
    Neurosci Lett; 2001 Mar; 301(1):25-8. PubMed ID: 11239708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations.
    Nowak DA; Hermsdörfer J; Schneider E; Glasauer S
    Exp Brain Res; 2004 Jul; 157(2):241-54. PubMed ID: 15064877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory motor coordination in an artificial gravity environment.
    Lackner JR; DiZio P
    J Gravit Physiol; 1997 Jul; 4(2):P9-12. PubMed ID: 11540711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation to Coriolis perturbations of voluntary body sway transfers to preprogrammed fall-recovery behavior.
    Bakshi A; Ventura J; DiZio P; Lackner JR
    J Neurophysiol; 2014 Mar; 111(5):977-83. PubMed ID: 24304863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to Coriolis force perturbation of movement trajectory; role of proprioceptive and cutaneous somatosensory feedback.
    Lackner JR; DiZio P
    Adv Exp Med Biol; 2002; 508():69-78. PubMed ID: 12171153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control.
    Chomienne L; Blouin J; Bringoux L
    J Neurophysiol; 2021 Jan; 125(1):154-165. PubMed ID: 33174494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.