These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 9705518)
41. Design of short external guide sequences (EGSs) for cleavage of target molecules with RNase P. Werner M; Rosa E; George ST Nucleic Acids Symp Ser; 1997; (36):19-21. PubMed ID: 9478194 [TBL] [Abstract][Full Text] [Related]
42. Cleavage efficiencies of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus. Schlegl J; Fürste JP; Bald R; Erdmann VA; Hartmann RK Nucleic Acids Res; 1992 Nov; 20(22):5963-70. PubMed ID: 1281315 [TBL] [Abstract][Full Text] [Related]
43. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481 [TBL] [Abstract][Full Text] [Related]
44. On a salmon (Oncorhynchus [corrected] keta) liver RNase, belonging to RNase T2 family: primary structure and some properties. Suzuki R; Kanno S; Ogawa Y; Iwama M; Tsuji T; Ohgi K; Irie M Biosci Biotechnol Biochem; 2005 Feb; 69(2):343-52. PubMed ID: 15725660 [TBL] [Abstract][Full Text] [Related]
45. Spinach chloroplast RNase P: a putative protein enzyme. Thomas BC; Gao L; Stomp D; Li X; Gegenheimer PA Nucleic Acids Symp Ser; 1995; (33):95-8. PubMed ID: 8643412 [TBL] [Abstract][Full Text] [Related]
46. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase. Ben-Artzi H; Zeelon E; Gorecki M; Panet A Proc Natl Acad Sci U S A; 1992 Feb; 89(3):927-31. PubMed ID: 1371014 [TBL] [Abstract][Full Text] [Related]
47. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains. Jacewicz A; Shuman S J Bacteriol; 2015 Aug; 197(15):2489-98. PubMed ID: 25986906 [TBL] [Abstract][Full Text] [Related]
48. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. Mackie GA; Genereaux JL J Mol Biol; 1993 Dec; 234(4):998-1012. PubMed ID: 7505337 [TBL] [Abstract][Full Text] [Related]
50. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268 [TBL] [Abstract][Full Text] [Related]
51. tRNA 3' end maturation in archaea has eukaryotic features: the RNase Z from Haloferax volcanii. Schierling K; Rösch S; Rupprecht R; Schiffer S; Marchfelder A J Mol Biol; 2002 Mar; 316(4):895-902. PubMed ID: 11884130 [TBL] [Abstract][Full Text] [Related]
52. Purification and properties of a novel pyrimidine-specific endoribonuclease termed endoribonuclease VII from calf thymus that is modulated by polyadenylate. Bachmann M; Zahn RK; Müller WE J Biol Chem; 1983 Jun; 258(11):7033-40. PubMed ID: 6853511 [TBL] [Abstract][Full Text] [Related]
53. Capillary enzymophoresis of nucleic acid fragments using coupled capillary electrophoresis and capillary enzyme microreactors having surface-immobilized RNA-modifying enzymes. Mechref Y; El Rassi Z Electrophoresis; 1995 Nov; 16(11):2164-71. PubMed ID: 8748750 [TBL] [Abstract][Full Text] [Related]
54. Molecular cloning and characterization of the human RNase kappa, an ortholog of Cc RNase. Economopoulou MA; Fragoulis EG; Sideris DC Nucleic Acids Res; 2007; 35(19):6389-98. PubMed ID: 17881363 [TBL] [Abstract][Full Text] [Related]
55. Probing the substrate specificity of Escherichia coli RNase E using a novel oligonucleotide-based assay. Kaberdin VR Nucleic Acids Res; 2003 Aug; 31(16):4710-6. PubMed ID: 12907711 [TBL] [Abstract][Full Text] [Related]
56. New sequence-specific human ribonuclease: purification and properties. Przewlocki G; Lipecka J; Edelman A; Przykorska A Nucleic Acids Res; 1998 Sep; 26(17):4047-55. PubMed ID: 9705518 [TBL] [Abstract][Full Text] [Related]
57. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I. Watanabe H; Ando E; Ohgi K; Irie M J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847 [TBL] [Abstract][Full Text] [Related]
58. Alteration of a mitochondrial tRNA precursor 5' leader abolishes its cleavage by yeast mitochondrial RNase P. Hollingsworth MJ; Martin NC Nucleic Acids Res; 1987 Nov; 15(21):8845-60. PubMed ID: 3317274 [TBL] [Abstract][Full Text] [Related]
59. Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNAs. Rybak SM; Vallee BL Biochemistry; 1988 Apr; 27(7):2288-94. PubMed ID: 3289612 [TBL] [Abstract][Full Text] [Related]
60. Isolation and characterization of a single-stranded specific endoribonuclease from Ehrlich cell nucleoli. Eichler DC; Eales SJ J Biol Chem; 1982 Dec; 257(23):14384-9. PubMed ID: 7142216 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]