These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 9705760)

  • 21. Hydrodynamic forces and critical stresses in low-density aggregates under shear flow.
    Vanni M; Gastaldi A
    Langmuir; 2011 Nov; 27(21):12822-33. PubMed ID: 21899341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase behavior of a simple dipolar fluid under shear flow in an electric field.
    McWhirter JL
    J Chem Phys; 2008 Jan; 128(3):034502. PubMed ID: 18205505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics.
    Seto R; Botet R; Briesen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041405. PubMed ID: 22181144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport coefficients and orientational distributions of spheroidal particles with magnetic moment normal to the particle axis (Analysis for an applied magnetic field normal to the shear plane).
    Satoh A; Ozaki M
    J Colloid Interface Sci; 2006 Jun; 298(2):957-66. PubMed ID: 16430913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-Newtonian behavior in simple fluids.
    Delhommelle J; Petravic J; Evans DJ
    J Chem Phys; 2004 Apr; 120(13):6117-23. PubMed ID: 15267496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Electrostatic Repulsion on the Viscosity of Bidisperse Silica Suspensions.
    Zaman AA; Moudgil BM
    J Colloid Interface Sci; 1999 Apr; 212(1):167-175. PubMed ID: 10072287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of flow configuration on hydrodynamic stresses and dispersion of low density rigid aggregates.
    Fellay LS; Vanni M
    J Colloid Interface Sci; 2012 Dec; 388(1):47-55. PubMed ID: 23010315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheology and orientational distributions of rodlike particles with magnetic moment normal to the particle axis for semi-dense dispersions (analysis by means of mean field approximation).
    Satoh A; Sakuda Y
    J Colloid Interface Sci; 2007 Apr; 308(2):532-41. PubMed ID: 17275015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations.
    Sánchez JH; Rinaldi C
    J Colloid Interface Sci; 2009 Mar; 331(2):500-6. PubMed ID: 19100560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restructuring of colloidal aggregates in shear flow: coupling interparticle contact models with Stokesian dynamics.
    Seto R; Botet R; Auernhammer GK; Briesen H
    Eur Phys J E Soft Matter; 2012 Dec; 35(12):9805. PubMed ID: 23229757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triplet correlation in sheared suspensions of Brownian particles.
    Yurkovetsky Y; Morris JF
    J Chem Phys; 2006 May; 124(20):204908. PubMed ID: 16774385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures and dynamics of protonated ammonia clusters.
    Fouqueau A; Meuwly M
    J Chem Phys; 2005 Dec; 123(24):244308. PubMed ID: 16396538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rigid quantum Monte Carlo simulations of condensed molecular matter: water clusters in the n=2-->8 range.
    Langley SF; Curotto E; Freeman DL; Doll JD
    J Chem Phys; 2007 Feb; 126(8):084506. PubMed ID: 17343457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of Interparticle Forces by Colloidal Particle Scattering: A Simulation Study.
    Whittle M; Murray BS; Dickinson E; Pinfield VJ
    J Colloid Interface Sci; 2000 Mar; 223(2):273-284. PubMed ID: 10700412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles.
    Kutteh R
    J Chem Phys; 2010 May; 132(17):174107. PubMed ID: 20459156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.