These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9705787)

  • 1. Potentiostatically Enhanced Complexation Model for the Determination of Isopotential Equilibrium Curves.
    Ebner AD; Ritter JA; Popov BN
    J Colloid Interface Sci; 1998 Jul; 203(2):488-92. PubMed ID: 9705787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive Metal Ion Adsorption in Goethite Systems Using In Situ Voltammetric Methods and Potentiometry.
    Palmqvist U; Ahlberg E; Lövgren L; Sjöberg S
    J Colloid Interface Sci; 1999 Oct; 218(2):388-396. PubMed ID: 10502370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.
    Hizal J; Apak R
    J Colloid Interface Sci; 2006 Mar; 295(1):1-13. PubMed ID: 16168423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of Copper(II), Cadmium(II), and Lead(II) Adsorption on Red Mud from Metal-EDTA Mixture Solutions.
    Güçlü K; Apak R
    J Colloid Interface Sci; 2000 Aug; 228(2):238-252. PubMed ID: 10926462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between the Limiting pH of Metal Ion Solubility and Total Metal Concentration.
    Apak R; Hizal J; Ustaer C
    J Colloid Interface Sci; 1999 Mar; 211(2):185-192. PubMed ID: 10049534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Structural Ion Adsorption Modeling of Competitive Binding of Oxyanions by Metal (Hydr)oxides.
    Hiemstra T; Van Riemsdijk WH
    J Colloid Interface Sci; 1999 Feb; 210(1):182-193. PubMed ID: 9924122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption/Desorption in a System Consisting of Humic Acid, Heavy Metals, and Clay Minerals.
    Liu A; Gonzalez RD
    J Colloid Interface Sci; 1999 Oct; 218(1):225-232. PubMed ID: 10489296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues.
    Das N; Jana RK
    J Colloid Interface Sci; 2006 Jan; 293(2):253-62. PubMed ID: 16095602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution.
    Zhou D; Zhang L; Zhou J; Guo S
    Water Res; 2004 Jun; 38(11):2643-50. PubMed ID: 15207594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Phosphonates onto the Goethite-Water Interface.
    Nowack B; Stone AT
    J Colloid Interface Sci; 1999 Jun; 214(1):20-30. PubMed ID: 10328892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Ions Binding to Natural Organic Matter Extracted from Wheat Bran: Application of the Surface Complexation Model.
    Ravat C; Monteil-Rivera F; Dumonceau J
    J Colloid Interface Sci; 2000 May; 225(2):329-339. PubMed ID: 11254270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Complexation Modeling and FTIR Study of Carbonate Adsorption to Goethite.
    Villalobos M; Leckie JO
    J Colloid Interface Sci; 2001 Mar; 235(1):15-32. PubMed ID: 11237439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study of the Adsorption of Transition Metals on Kaolinite.
    Ikhsan J; Johnson BB; Wells JD
    J Colloid Interface Sci; 1999 Sep; 217(2):403-410. PubMed ID: 10469549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent.
    Meena AK; Mishra GK; Rai PK; Rajagopal C; Nagar PN
    J Hazard Mater; 2005 Jun; 122(1-2):161-70. PubMed ID: 15878798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single-site model for divalent transition and heavy metal adsorption over a range of metal concentrations.
    Criscenti LJ; Sverjensky DA
    J Colloid Interface Sci; 2002 Sep; 253(2):329-52. PubMed ID: 16290865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive complexation of metal ions with humic substances.
    Zhou P; Yan H; Gu B
    Chemosphere; 2005 Mar; 58(10):1327-37. PubMed ID: 15686750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater.
    Kent DB; Davis JA; Joye JL; Curtis GP
    Environ Pollut; 2008 May; 153(1):44-52. PubMed ID: 18178297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.