These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 9705824)
41. The structure of a trimeric archaeal adenylate kinase. Vonrhein C; Bönisch H; Schäfer G; Schulz GE J Mol Biol; 1998 Sep; 282(1):167-79. PubMed ID: 9733648 [TBL] [Abstract][Full Text] [Related]
42. Three proliferating cell nuclear antigen homologues from Metallosphaera sedula form a head-to-tail heterotrimer. Iwata F; Hirakawa H; Nagamune T Sci Rep; 2016 May; 6():26588. PubMed ID: 27228945 [TBL] [Abstract][Full Text] [Related]
43. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase. Smeulders MJ; Pol A; Venselaar H; Barends TR; Hermans J; Jetten MS; Op den Camp HJ J Bacteriol; 2013 Sep; 195(18):4046-56. PubMed ID: 23836868 [TBL] [Abstract][Full Text] [Related]
44. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Mukherjee A; Wheaton GH; Counts JA; Ijeomah B; Desai J; Kelly RM Environ Microbiol; 2017 Jul; 19(7):2831-2842. PubMed ID: 28585353 [TBL] [Abstract][Full Text] [Related]
45. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula. Auernik KS; Kelly RM Appl Environ Microbiol; 2010 Apr; 76(8):2668-72. PubMed ID: 20190092 [TBL] [Abstract][Full Text] [Related]
46. Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Mukherjee A; Wheaton GH; Blum PH; Kelly RM Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16702-7. PubMed ID: 23010932 [TBL] [Abstract][Full Text] [Related]
47. Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution. Ai C; McCarthy S; Eckrich V; Rudrappa D; Qiu G; Blum P J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1455-65. PubMed ID: 27520549 [TBL] [Abstract][Full Text] [Related]
48. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. McCarthy S; Ai C; Wheaton G; Tevatia R; Eckrich V; Kelly R; Blum P J Bacteriol; 2014 Oct; 196(20):3562-70. PubMed ID: 25092032 [TBL] [Abstract][Full Text] [Related]
49. An Extracellular Tetrathionate Hydrolase from the Thermoacidophilic Archaeon Acidianus Ambivalens with an Activity Optimum at pH 1. Protze J; Müller F; Lauber K; Naß B; Mentele R; Lottspeich F; Kletzin A Front Microbiol; 2011; 2():68. PubMed ID: 21747790 [TBL] [Abstract][Full Text] [Related]
50. Genome Sequences of Five Type Strain Members of the Archaeal Family Counts JA; Vitko NP; Kelly RM Microbiol Resour Announc; 2020 Mar; 9(11):. PubMed ID: 32165389 [TBL] [Abstract][Full Text] [Related]
51. Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae. Counts JA; Vitko NP; Kelly RM Environ Microbiol; 2022 Feb; 24(2):850-865. PubMed ID: 34406696 [TBL] [Abstract][Full Text] [Related]
53. Complete Genome Sequences of Extremely Thermoacidophilic Metal-Mobilizing Type Strain Members of the Archaeal Family Sulfolobaceae, Acidianus brierleyi DSM-1651, Acidianus sulfidivorans DSM-18786, and Metallosphaera hakonensis DSM-7519. Counts JA; Vitko NP; Kelly RM Microbiol Resour Announc; 2018 Jul; 7(2):. PubMed ID: 30533808 [TBL] [Abstract][Full Text] [Related]
54. Solving a new R2lox protein structure by microcrystal electron diffraction. Xu H; Lebrette H; Clabbers MTB; Zhao J; Griese JJ; Zou X; Högbom M Sci Adv; 2019 Aug; 5(8):eaax4621. PubMed ID: 31457106 [TBL] [Abstract][Full Text] [Related]
55. Phenotype-driven assessment of the ancestral trajectory of sulfur biooxidation in the thermoacidophilic archaea Sulfolobaceae. Willard DJ; H Manesh MJ; Bing RG; Alexander BH; Kelly RM mBio; 2024 Aug; 15(8):e0103324. PubMed ID: 38953360 [TBL] [Abstract][Full Text] [Related]
56. Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon acidianus ambivalens. Zimmermann P; Laska S; Kletzin A Arch Microbiol; 1999 Aug; 172(2):76-82. PubMed ID: 10415168 [TBL] [Abstract][Full Text] [Related]
57. Draft Genome Sequence of the Novel Thermoacidophilic Archaeon Acidianus copahuensis Strain ALE1, Isolated from the Copahue Volcanic Area in Neuquen, Argentina. Urbieta MS; Rascovan N; Castro C; Revale S; Giaveno MA; Vazquez M; Donati ER Genome Announc; 2014 May; 2(3):. PubMed ID: 24812211 [TBL] [Abstract][Full Text] [Related]
58. Ambineela, an unusual blue protein isolated from the archaeon Acidianus ambivalens. Gomes CM; Teixeira M Biochem Biophys Res Commun; 1998 Aug; 249(1):23-5. PubMed ID: 9705824 [TBL] [Abstract][Full Text] [Related]
59. Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. Moll RG Biochem J; 2003 Aug; 374(Pt 1):247-54. PubMed ID: 12775213 [TBL] [Abstract][Full Text] [Related]