BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9705858)

  • 1. Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: assessment of the active site.
    Nath D; Rao M
    Biochem Biophys Res Commun; 1998 Aug; 249(1):207-12. PubMed ID: 9705858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationship of xylanase: fluorimetric analysis of the tryptophan environment.
    Bandivadekar KR; Deshpande VV
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):583-7. PubMed ID: 8615833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1.
    Nakamura S; Nakai R; Namba K; Kubo T; Wakabayashi K; Aono R; Horikoshi K
    Nucleic Acids Symp Ser; 1995; (34):99-100. PubMed ID: 8841571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for tryptophan in proximity to histidine and cysteine as essential to the active site of an alkaline protease.
    Tanksale AM; Vernekar JV; Ghatge MS; Deshpande VV
    Biochem Biophys Res Commun; 2000 Apr; 270(3):910-7. PubMed ID: 10772924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity.
    Lawson SL; Wakarchuk WW; Withers SG
    Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of xylanase from alkalothermophilic Bacillus species: evidence for essential carboxyl group.
    Chauthaiwale J; Rao M
    Biochim Biophys Acta; 1994 Feb; 1204(2):164-8. PubMed ID: 8142455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase.
    Lawson SL; Wakarchuk WW; Withers SG
    Biochemistry; 1997 Feb; 36(8):2257-65. PubMed ID: 9047328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site.
    Deshpande V; Hinge J; Rao M
    Biochim Biophys Acta; 1990 Nov; 1041(2):172-7. PubMed ID: 2265203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence spectroscopic studies on tryptophan at the saccharide-binding site of castor bean hemagglutinin.
    Yamasaki N; Absar N; Funatsu G
    J Mol Recognit; 1989 Apr; 1(4):153-7. PubMed ID: 2631862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of a lysine residue in the active site of a thermostable xylanase from Thermomonospora sp.
    George SP; Ahmad A; Rao MB
    Biochem Biophys Res Commun; 2001 Mar; 282(1):48-54. PubMed ID: 11263969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study.
    Narahari A; Swamy MJ
    J Photochem Photobiol B; 2009 Oct; 97(1):40-7. PubMed ID: 19700341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase.
    Joshi MD; Hedberg A; McIntosh LP
    Protein Sci; 1997 Dec; 6(12):2667-70. PubMed ID: 9416621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural environment of an essential cysteine residue of xylanase from Chainia sp. (NCL 82.5.1).
    Rao M; Khadilkar S; Bandivadekar KR; Deshpande V
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):771-5. PubMed ID: 8670151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence of tryptophan residues in firefly luciferases and enzyme--substrate complexes.
    Chudinova EA; Dementieva EI; Brovko LY; Savitskii AP; Ugarova NN
    Biochemistry (Mosc); 1999 Oct; 64(10):1097-103. PubMed ID: 10561553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of tryptophan residues in substrate binding to catalytic domains A and B of xylanase C from Fibrobacter succinogenes S85.
    McAllister KA; Marrone L; Clarke AJ
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):342-52. PubMed ID: 11004572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies.
    Gruber K; Klintschar G; Hayn M; Schlacher A; Steiner W; Kratky C
    Biochemistry; 1998 Sep; 37(39):13475-85. PubMed ID: 9753433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.