BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 9705984)

  • 1. The barrier domain for solute permeation varies with lipid bilayer phase structure.
    Xiang T; Xu Y; Anderson BD
    J Membr Biol; 1998 Sep; 165(1):77-90. PubMed ID: 9705984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase structures of binary lipid bilayers as revealed by permeability of small molecules.
    Xiang TX; Anderson BD
    Biochim Biophys Acta; 1998 Mar; 1370(1):64-76. PubMed ID: 9518554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of a transmembrane protein on the permeability of small molecules across lipid membranes.
    Xiang T; Anderson BD
    J Membr Biol; 2000 Feb; 173(3):187-201. PubMed ID: 10667915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent contributions to the transport of substituted p-toluic acids across lipid bilayer membranes.
    Xiang TX; Anderson BD
    J Pharm Sci; 1994 Oct; 83(10):1511-8. PubMed ID: 7884677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs.
    Lewis RN; Pohle W; McElhaney RN
    Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers.
    Ziblat R; Leiserowitz L; Addadi L
    J Am Chem Soc; 2010 Jul; 132(28):9920-7. PubMed ID: 20586463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of ether- and ester-linked phospholipids.
    Kruczek J; Saunders M; Khosla M; Tu Y; Pandit SA
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2297-2307. PubMed ID: 28882547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport across 1,9-decadiene precisely mimics the chemical selectivity of the barrier domain in egg lecithin bilayers.
    Mayer PT; Anderson BD
    J Pharm Sci; 2002 Mar; 91(3):640-6. PubMed ID: 11920749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
    Bernsdorff C; Wolf A; Winter R; Gratton E
    Biophys J; 1997 Mar; 72(3):1264-77. PubMed ID: 9138572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport methods for probing the barrier domain of lipid bilayer membranes.
    Xiang TX; Chen X; Anderson BD
    Biophys J; 1992 Jul; 63(1):78-88. PubMed ID: 1420875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayer interactions of ether- and ester-linked phospholipids: dihexadecyl- and dipalmitoylphosphatidylcholines.
    Kim JT; Mattai J; Shipley GG
    Biochemistry; 1987 Oct; 26(21):6599-603. PubMed ID: 3427030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric characterization of ester- and ether-linked lipid bilayers by pressure perturbation calorimetry and densitometry.
    Tamai N; Nambu Y; Tanaka S; Goto M; Matsuki H; Kaneshina S
    Colloids Surf B Biointerfaces; 2012 Apr; 92():232-9. PubMed ID: 22221457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chain-melting phase transition and short-range molecular interactions in phospholipid foam bilayers.
    Exerowa D
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):75-100. PubMed ID: 11908797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.
    Issack BB; Peslherbe GH
    J Phys Chem B; 2015 Jul; 119(29):9391-400. PubMed ID: 25679811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independence of substituent contributions to the transport of small molecule permeants in lipid bilayers.
    Mayer PT; Xiang TX; Anderson BD
    AAPS PharmSci; 2000; 2(2):E14. PubMed ID: 11741230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computer simulation of functional group contributions to free energy in water and a DPPC lipid bilayer.
    Xiang TX; Anderson BD
    Biophys J; 2002 Apr; 82(4):2052-66. PubMed ID: 11916862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.