BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9706045)

  • 41. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.
    Dahan A; Sabit H; Amidon GL
    Drug Metab Dispos; 2009 Oct; 37(10):2028-36. PubMed ID: 19589874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers.
    Wang Y; Cao J; Wang X; Zeng S
    Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transepithelial transport mechanisms of 7,8-dihydroxyflavone, a small molecular TrkB receptor agonist, in human intestinal Caco-2 cells.
    Chen Y; Xue F; Xia G; Zhao Z; Chen C; Li Y; Zhang Y
    Food Funct; 2019 Aug; 10(8):5215-5227. PubMed ID: 31384856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transepithelial transport of artepillin C in intestinal Caco-2 cell monolayers.
    Konishi Y
    Biochim Biophys Acta; 2005 Jul; 1713(2):138-44. PubMed ID: 16004960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers.
    Li Y; Fawcett JP; Zhang H; Tucker IG
    J Pharm Pharmacol; 2007 Apr; 59(4):503-11. PubMed ID: 17430633
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers.
    Bak A; Gudmundsson OS; Friis GJ; Siahaan TJ; Borchardt RT
    Pharm Res; 1999 Jan; 16(1):24-9. PubMed ID: 9950274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polarized efflux of 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein from cultured epithelial cell monolayers.
    Collington GK; Hunter J; Allen CN; Simmons NL; Hirst BH
    Biochem Pharmacol; 1992 Aug; 44(3):417-24. PubMed ID: 1510694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell.
    Ho NF; Burton PS; Conradi RA; Barsuhn CL
    J Pharm Sci; 1995 Jan; 84(1):21-7. PubMed ID: 7714738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The absorption and transport of magnolol in Caco-2 cell model.
    Wu AG; Zeng B; Huang MQ; Li SM; Chen JN; Lai XP
    Chin J Integr Med; 2013 Mar; 19(3):206-11. PubMed ID: 22903441
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Involvement of P-glycoprotein and multidrug resistance associated protein 1 on the transepithelial transport of a mercaptoacetamide-based histone-deacetylase inhibitor in Caco-2 cells.
    Konsoula Z; Jung M
    Biol Pharm Bull; 2009 Jan; 32(1):74-8. PubMed ID: 19122284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intestinal transport of bis(12)-hupyridone in Caco-2 cells and its improved permeability by the surfactant Brij-35.
    Yu H; Hu YQ; Ip FC; Zuo Z; Han YF; Ip NY
    Biopharm Drug Dispos; 2011 Apr; 32(3):140-50. PubMed ID: 21271607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytotoxicity of pivoxil esters of antiviral acyclic nucleoside phosphonates: adefovir dipivoxil versus adefovir.
    Zídek Z; Kmonícková E; Holý A
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2005 Dec; 149(2):315-9. PubMed ID: 16601779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains.
    Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y
    J Nutr; 1995 Oct; 125(10):2577-85. PubMed ID: 7562093
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers.
    Carrière P; Mantha M; Champagne-Paradis S; Jumarie C
    Biometals; 2011 Oct; 24(5):857-74. PubMed ID: 21424617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis, in vitro antiviral evaluation, and stability studies of bis(S-acyl-2-thioethyl) ester derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) as potential PMEA prodrugs with improved oral bioavailability.
    Benzaria S; Pélicano H; Johnson R; Maury G; Imbach JL; Aubertin AM; Obert G; Gosselin G
    J Med Chem; 1996 Dec; 39(25):4958-65. PubMed ID: 8960556
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells.
    Gao J; Murase O; Schowen RL; Aubé J; Borchardt RT
    Pharm Res; 2001 Feb; 18(2):171-6. PubMed ID: 11405287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers.
    Lee K; Ng C; Brouwer KL; Thakker DR
    J Pharmacol Exp Ther; 2002 Nov; 303(2):574-80. PubMed ID: 12388638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers.
    Hosoya KI; Kim KJ; Lee VH
    Pharm Res; 1996 Jun; 13(6):885-90. PubMed ID: 8792427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the intestinal absorption of morroniside from Cornus officinalis Sieb. et Zucc via a Caco-2 cell monolayer model.
    Xu R; Zhu H; Hu L; Yu B; Zhan X; Yuan Y; Zhou P
    PLoS One; 2020; 15(5):e0227844. PubMed ID: 32470043
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transport characteristics of ebastine and its metabolites across human intestinal epithelial Caco-2 cell monolayers.
    Imamura Y; Shimizu K; Yamashita F; Yamaoka K; Takakura Y; Hashida M
    Biol Pharm Bull; 2001 Aug; 24(8):930-4. PubMed ID: 11510488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.