BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9706054)

  • 1. Process variable implications for residual solvent removal and polymer morphology in the formation of gentamycin-loaded poly (L-lactide) microparticles.
    Falk RF; Randolph TW
    Pharm Res; 1998 Aug; 15(8):1233-7. PubMed ID: 9706054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process.
    Bleich J; Müller BW
    J Microencapsul; 1996; 13(2):131-9. PubMed ID: 8999119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric microspheres prepared by spraying into compressed carbon dioxide.
    Bodmeier R; Wang H; Dixon DJ; Mawson S; Johnston KP
    Pharm Res; 1995 Aug; 12(8):1211-7. PubMed ID: 7494836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology.
    Martin TM; Bandi N; Shulz R; Roberts CB; Kompella UB
    AAPS PharmSciTech; 2002; 3(3):E18. PubMed ID: 12916933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process.
    Koushik K; Kompella UB
    Pharm Res; 2004 Mar; 21(3):524-35. PubMed ID: 15070105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process.
    Patomchaiviwat V; Paeratakul O; Kulvanich P
    AAPS PharmSciTech; 2008; 9(4):1119-29. PubMed ID: 18989787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.
    Djerafi R; Swanepoel A; Crampon C; Kalombo L; Labuschagne P; Badens E; Masmoudi Y
    Eur J Pharm Sci; 2017 May; 102():161-171. PubMed ID: 28302396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO2.
    Kang Y; Wu J; Yin G; Huang Z; Liao X; Yao Y; Ouyang P; Wang H; Yang Q
    Langmuir; 2008 Jul; 24(14):7432-41. PubMed ID: 18547089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual solvents in biodegradable microparticles. Influence of process parameters on the residual solvent in microparticles produced by the aerosol solvent extraction system (ASES) process.
    Ruchatz F; Kleinebudde P; Muller BW
    J Pharm Sci; 1997 Jan; 86(1):101-5. PubMed ID: 9002467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.
    Othman R; Vladisavljević GT; Thomas NL; Nagy ZK
    Colloids Surf B Biointerfaces; 2016 May; 141():187-195. PubMed ID: 26852102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical antisolvent precipitation of PHBV microparticles.
    Costa MS; Duarte AR; Cardoso MM; Duarte CM
    Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of process parameters to achieve different ternary phase microparticle configurations.
    Lee WL; Foo WL; Widjaja E; Loo SC
    Acta Biomater; 2010 Apr; 6(4):1342-52. PubMed ID: 19854303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ivermectin-loaded microparticles for parenteral sustained release: in vitro characterization and effect of some formulation variables.
    Camargo JA; Sapin A; Daloz D; Maincent P
    J Microencapsul; 2010; 27(7):609-17. PubMed ID: 20695833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.
    Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C
    Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide extraction of residual solvents in poly(lactide-co-glycolide) microparticles.
    Herberger J; Murphy K; Munyakazi L; Cordia J; Westhaus E
    J Control Release; 2003 Jun; 90(2):181-95. PubMed ID: 12810301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters.
    Dorati R; Genta I; Colzani B; Tripodo G; Conti B
    Drug Dev Ind Pharm; 2015; 41(7):1182-92. PubMed ID: 24994001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS).
    Kang Y; Yin G; Ouyang P; Huang Z; Yao Y; Liao X; Chen A; Pu X
    J Colloid Interface Sci; 2008 Jun; 322(1):87-94. PubMed ID: 18402971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.