BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9707260)

  • 1. Molecular temporal bone pathology: IV. Analysis of DNA template length using mitochondrial PCR primers.
    Wackym PA; Kerner MM; Grody WW
    Laryngoscope; 1998 Aug; 108(8 Pt 2 Suppl 88):4-7. PubMed ID: 9707260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of DNA extracted from archival celloidin-embedded human temporal bone sections.
    Wackym PA; Chen CT; Kerner MM; Bell TS
    Am J Otol; 1995 Jan; 16(1):14-20. PubMed ID: 8579172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerase chain reaction amplification of DNA from archival celloidin-embedded human temporal bone sections.
    Wackym PA; Simpson TA; Gantz BJ; Smith RJ
    Laryngoscope; 1993 Jun; 103(6):583-8. PubMed ID: 8502090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of mitochondrial DNA from archival temporal bone specimens.
    Simpson TA; Smith RJ
    Laryngoscope; 1995 Jan; 105(1):28-34. PubMed ID: 7837910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of RNA from archival human temporal bone sections.
    Ohtani F; Furuta Y; Iino Y; Inuyama Y; Fukuda S
    Laryngoscope; 1999 Apr; 109(4):617-20. PubMed ID: 10201751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Extraction, amplification, recombination and sequencing of the mitochondrial DNA from celloidin embedded human temporal bone sections].
    Dai P; Jiang S; Yang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Aug; 33(4):206-9. PubMed ID: 11717883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study.
    Bai U; Seidman MD; Hinojosa R; Quirk WS
    Am J Otol; 1997 Jul; 18(4):449-53. PubMed ID: 9233484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of mitochondrial DNA from human inner ear using real-time polymerase chain reaction and laser microdissection.
    Kimura Y; Kouda H; Eishi Y; Kobayashi D; Suzuki Y; Ishige I; Iino Y; Kitamura K
    Acta Otolaryngol; 2005 Jul; 125(7):697-701. PubMed ID: 16012029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical report: laser microdissection of cochlear structures from celloidin embedded human temporal bone tissues and detection of the mitochondrial DNA common deletion using real time PCR.
    Markaryan A; Nelson EG; Tretiakova M; Hinojosa R
    Hear Res; 2008 Oct; 244(1-2):1-6. PubMed ID: 18706496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of mitochondrial DNA deletions and cochlear pathology: a molecular biologic tool.
    Seidman MD; Bai U; Khan MJ; Murphy MJ; Quirk WS; Castora FL; Hinojosa R
    Laryngoscope; 1996 Jun; 106(6):777-83. PubMed ID: 8656967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and sequencing of genomic DNA extracted from archival human temporal bone sections.
    Kerner MM; Wackym PA; Popper P; Tabor DE; Grody WW
    Laryngoscope; 1994 Feb; 104(2):127-34. PubMed ID: 8302113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative cellular level analysis of mitochondrial DNA 3243A > G mutations in individual tissues from the archival temporal bones of a MELAS patient.
    Koda H; Kimura Y; Ishige I; Eishi Y; Iino Y; Kitamura K
    Acta Otolaryngol; 2010 Mar; 130(3):344-50. PubMed ID: 19685357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection--a technical report.
    Kimura Y; Kubo S; Koda H; Shigemoto K; Sawabe M; Kitamura K
    Hear Res; 2013 Aug; 302():26-31. PubMed ID: 23660400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of ribonucleic acid detection from archival Guinea pig temporal bone specimens.
    Hall KL; Pitts DR; Anne S; Semaan MT; Alagramam KN; Megerian CA
    Otol Neurotol; 2007 Jan; 28(1):116-23. PubMed ID: 16983313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and specific amplification of identified partial duplications of human mitochondrial DNA by long PCR.
    Fromenty B; Manfredi G; Sadlock J; Zhang L; King MP; Schon EA
    Biochim Biophys Acta; 1996 Sep; 1308(3):222-30. PubMed ID: 8809114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing.
    Lee HC; Pang CY; Hsu HS; Wei YH
    Biochim Biophys Acta; 1994 Apr; 1226(1):37-43. PubMed ID: 8155737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplex real-time PCR assay for quantifying mitochondrial DNA deletions in laser microdissected single spiral ganglion cells.
    Markaryan A; Nelson EG; Hinojosa R
    Methods Mol Biol; 2011; 755():315-26. PubMed ID: 21761316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential amplification is minimised in long-PCR systems.
    Kopsidas G; Kovalenko SA; Islam MM; Gingold EB; Linnane AW
    Mutat Res; 2000 Nov; 456(1-2):83-8. PubMed ID: 11087899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates.
    Sorenson MD; Ast JC; Dimcheff DE; Yuri T; Mindell DP
    Mol Phylogenet Evol; 1999 Jul; 12(2):105-14. PubMed ID: 10381314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical report: immunofluorescence and TUNEL staining of celloidin embedded human temporal bone tissues.
    Markaryan A; Nelson EG; Tretiakova M; Hinojosa R
    Hear Res; 2008 Jul; 241(1-2):1-6. PubMed ID: 18547759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.