BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9707324)

  • 1. Development of the gut in Xenopus laevis.
    Chalmers AD; Slack JM
    Dev Dyn; 1998 Aug; 212(4):509-21. PubMed ID: 9707324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus cDNA microarray identification of genes with endodermal organ expression.
    Park EC; Hayata T; Cho KW; Han JK
    Dev Dyn; 2007 Jun; 236(6):1633-49. PubMed ID: 17474120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoderm specification and differentiation in Xenopus embryos.
    Horb ME; Slack JM
    Dev Biol; 2001 Aug; 236(2):330-43. PubMed ID: 11476575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-beta signals and a pattern in Xenopus laevis endodermal development.
    Henry GL; Brivanlou IH; Kessler DS; Hemmati-Brivanlou A; Melton DA
    Development; 1996 Mar; 122(3):1007-15. PubMed ID: 8631246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis.
    Contakos SP; Gaydos CM; Pfeil EC; McLaughlin KA
    Dev Biol; 2005 Dec; 288(1):294-307. PubMed ID: 16289076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of the germ layers along the animal-vegetal axis in Xenopus laevis.
    Yasuo H; Lemaire P
    Int J Dev Biol; 2001; 45(1):229-35. PubMed ID: 11291851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms.
    Pan FC; Chen Y; Bayha E; Pieler T
    Mech Dev; 2007 Aug; 124(7-8):518-31. PubMed ID: 17643968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development of the gut: new light on an old hypothesis.
    Rawdon BB
    Cell Biol Int; 2001; 25(1):9-15. PubMed ID: 11237404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray-based identification of VegT targets in Xenopus.
    Taverner NV; Kofron M; Shin Y; Kabitschke C; Gilchrist MJ; Wylie C; Cho KW; Heasman J; Smith JC
    Mech Dev; 2005 Mar; 122(3):333-54. PubMed ID: 15763211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF8, Wnt8 and Myf5 are target genes of Tbx6 during anteroposterior specification in Xenopus embryo.
    Li HY; Bourdelas A; Carron C; Gomez C; Boucaut JC; Shi DL
    Dev Biol; 2006 Feb; 290(2):470-81. PubMed ID: 16343478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells.
    Wen L; Yang Y; Wang Y; Xu A; Wu D; Chen Y
    Dev Dyn; 2010 Aug; 239(8):2198-207. PubMed ID: 20568240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular distribution of Mr 25,000 protein, a protein partially overlapping phosvitin and lipovitellin 2 in vitellogenin B1, and yolk proteins in Xenopus laevis oocytes and embryos.
    Nakamura H; Yoshitome S; Sugimoto I; Sado Y; Kawahara A; Ueno S; Miyahara T; Yoshida Y; Aoki-Yagi N; Hashimoto E
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):621-8. PubMed ID: 17804270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZFPIP/Zfp462 is maternally required for proper early Xenopus laevis development.
    Laurent A; Masse J; Omilli F; Deschamps S; Richard-Parpaillon L; Chartrain I; Pellerin I
    Dev Biol; 2009 Mar; 327(1):169-76. PubMed ID: 19111535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling.
    Faucourt M; Houliston E; Besnardeau L; Kimelman D; Lepage T
    Dev Biol; 2001 Jan; 229(2):287-306. PubMed ID: 11203696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for dual mechanisms of mesoderm establishment in Xenopus embryos.
    Kavka AI; Green JB
    Dev Dyn; 2000 Sep; 219(1):77-83. PubMed ID: 10974673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-gut endoderm of chick embryos is regionalized by 1.5 days of development.
    Matsushita S; Ishii Y; Scotting PJ; Kuroiwa A; Yasugi S
    Dev Dyn; 2002 Jan; 223(1):33-47. PubMed ID: 11803568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frizzled-7-dependent tissue separation in the Xenopus gastrula.
    Winklbauer R; Luu O
    Methods Mol Biol; 2008; 469():485-92. PubMed ID: 19109728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis.
    De Boer TP; Kok B; Neuteboom KI; Spieker N; De Graaf J; Destrée OH; Rook MB; Van Veen TA; Jongsma HJ; Vos MA; De Bakker JM; Van Der Heyden MA
    Dev Dyn; 2005 Jul; 233(3):864-71. PubMed ID: 15895416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of the adenylate cyclase activity of the embryonic chorda-mesoderm and endoderm during the migration of primordial germ cells in Xenopus laevis (anuran amphibian)].
    Brustis JJ; Galante M; Peyret D
    C R Seances Acad Sci III; 1982 Sep; 295(2):89-92. PubMed ID: 6816405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.