These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 9707535)
1. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Adachi K; Hamer JE Plant Cell; 1998 Aug; 10(8):1361-74. PubMed ID: 9707535 [TBL] [Abstract][Full Text] [Related]
2. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Mitchell TK; Dean RA Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140 [TBL] [Abstract][Full Text] [Related]
3. Identification of proteins that interact with two regulators of appressorium development, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungus Magnaporthe grisea. Kulkarni RD; Dean RA Mol Genet Genomics; 2004 Jan; 270(6):497-508. PubMed ID: 14648199 [TBL] [Abstract][Full Text] [Related]
4. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
5. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Choi W; Dean RA Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122 [TBL] [Abstract][Full Text] [Related]
6. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast. Selvaraj P; Tham HF; Ramanujam R; Naqvi NI Mol Microbiol; 2017 Aug; 105(3):484-504. PubMed ID: 28544028 [TBL] [Abstract][Full Text] [Related]
7. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Xu JR; Hamer JE Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911 [TBL] [Abstract][Full Text] [Related]
8. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. Marroquin-Guzman M; Wilson RA PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357 [TBL] [Abstract][Full Text] [Related]
9. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Nishimura M; Park G; Xu JR Mol Microbiol; 2003 Oct; 50(1):231-43. PubMed ID: 14507377 [TBL] [Abstract][Full Text] [Related]
10. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571 [TBL] [Abstract][Full Text] [Related]
11. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Ahn N; Kim S; Choi W; Im KH; Lee YH Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545 [TBL] [Abstract][Full Text] [Related]
12. Involvement of cAMP and protein kinase A in conidial differentiation by Erysiphe graminis f. sp. hordei. Hall AA; Bindslev L; Rouster J; Rasmussen SW; Oliver RP; Gurr SJ Mol Plant Microbe Interact; 1999 Nov; 12(11):960-8. PubMed ID: 10550894 [TBL] [Abstract][Full Text] [Related]
13. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Zhao X; Kim Y; Park G; Xu JR Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760 [TBL] [Abstract][Full Text] [Related]
14. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Skamnioti P; Gurr SJ Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215 [TBL] [Abstract][Full Text] [Related]
15. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568 [TBL] [Abstract][Full Text] [Related]
16. A Feed-Forward Subnetwork Emerging from Integrated TOR- and cAMP/PKA-Signaling Architecture Reinforces Sun G; Qi X; Wilson RA Mol Plant Microbe Interact; 2019 May; 32(5):593-607. PubMed ID: 30431400 [TBL] [Abstract][Full Text] [Related]
17. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Beckerman JL; Ebbole DJ Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621 [TBL] [Abstract][Full Text] [Related]
18. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. Yan X; Li Y; Yue X; Wang C; Que Y; Kong D; Ma Z; Talbot NJ; Wang Z PLoS Pathog; 2011 Dec; 7(12):e1002385. PubMed ID: 22144889 [TBL] [Abstract][Full Text] [Related]
20. MoRgs3 functions in intracellular reactive oxygen species perception-integrated cAMP signaling to promote appressorium formation in Zhang R; Liu X; Xu J; Chen C; Tang Z; Wu C; Li X; Su L; Liu M; Yang L; Li G; Zhang H; Wang P; Zhang Z mBio; 2024 Aug; 15(8):e0099624. PubMed ID: 38980036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]