BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9707637)

  • 1. The A kinase anchoring protein is required for mediating the effect of protein kinase A on ROMK1 channels.
    Ali S; Chen X; Lu M; Xu JZ; Lerea KM; Hebert SC; Wang WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):10274-8. PubMed ID: 9707637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PKA-induced stimulation of ROMK1 channel activity is governed by both tethering and non-tethering domains of an A kinase anchor protein.
    Ali S; Wei Y; Lerea KM; Becker L; Rubin CS; Wang W
    Cell Physiol Biochem; 2001; 11(3):135-42. PubMed ID: 11410709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase.
    Xu ZC; Yang Y; Hebert SC
    J Biol Chem; 1996 Apr; 271(16):9313-9. PubMed ID: 8621594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
    Liou HH; Zhou SS; Huang CL
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5820-5. PubMed ID: 10318968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels.
    Lin D; Sterling H; Lerea KM; Giebisch G; Wang WH
    J Biol Chem; 2002 Nov; 277(46):44278-84. PubMed ID: 12221079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of ROMK1 K+ channel activity involves phosphorylation processes.
    McNicholas CM; Wang W; Ho K; Hebert SC; Giebisch G
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8077-81. PubMed ID: 8058760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ROMK1 channels by protein-tyrosine kinase and -tyrosine phosphatase.
    Moral Z; Dong K; Wei Y; Sterling H; Deng H; Ali S; Gu R; Huang XY; Hebert SC; Giebisch G; Wang WH
    J Biol Chem; 2001 Mar; 276(10):7156-63. PubMed ID: 11114300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+) sensitivity of ROMK1 K(+) channel: role of the Na(+)/H(+) antiporter.
    Sabirov RZ; Azimov RR; Ando-Akatsuka Y; Miyoshi T; Okada Y
    J Membr Biol; 1999 Nov; 172(1):67-76. PubMed ID: 10552015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pregabalin activates ROMK1 channels via cAMP-dependent protein kinase and protein kinase C.
    Lee CH; Liou HH
    Eur J Pharmacol; 2014 Oct; 740():35-44. PubMed ID: 25008072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROMK1 channel activity is regulated by monoubiquitination.
    Lin DH; Sterling H; Wang Z; Babilonia E; Yang B; Dong K; Hebert SC; Giebisch G; Wang WH
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4306-11. PubMed ID: 15767585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase A-mediated phosphorylation of HERG potassium channels in a human cell line.
    Wei Z; Thomas D; Karle CA; Kathöfer S; Schenkel J; Kreye VA; Ficker E; Wible BA; Kiehn J
    Chin Med J (Engl); 2002 May; 115(5):668-76. PubMed ID: 12133532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism.
    Lee CH; Tsai TS; Liou HH
    Br J Pharmacol; 2008 May; 154(1):216-25. PubMed ID: 18311184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels.
    Lin D; Kamsteeg EJ; Zhang Y; Jin Y; Sterling H; Yue P; Roos M; Duffield A; Spencer J; Caplan M; Wang WH
    J Biol Chem; 2008 Mar; 283(12):7674-81. PubMed ID: 18211905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1.
    Gerlach AC; Gangopadhyay NN; Devor DC
    J Biol Chem; 2000 Jan; 275(1):585-98. PubMed ID: 10617655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AKAP proteins anchor cAMP-dependent protein kinase to KvLQT1/IsK channel complex.
    Potet F; Scott JD; Mohammad-Panah R; Escande D; Baró I
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2038-45. PubMed ID: 11299204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for involvement of A-kinase anchoring protein in activation of rat arterial K(ATP) channels by protein kinase A.
    Hayabuchi Y; Dart C; Standen NB
    J Physiol; 2001 Oct; 536(Pt 2):421-7. PubMed ID: 11600677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of beta-adrenergic modulation of large conductance, calcium-activated potassium (maxi-K) channels in Xenopus oocytes. Identification of the camp-dependent protein kinase phosphorylation site.
    Nara M; Dhulipala PD; Wang YX; Kotlikoff MI
    J Biol Chem; 1998 Jun; 273(24):14920-4. PubMed ID: 9614096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle.
    Koumi S; Wasserstrom JA; Ten Eick RE
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):661-78. PubMed ID: 7473227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.