These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9708304)

  • 21. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inability of non-proteolytic Clostridium botulinum to grow in mussels inoculated via immersion and packaged in high oxygen atmospheres.
    Newell CR; Doyle M; Ma L
    Food Microbiol; 2015 Apr; 46():204-209. PubMed ID: 25475286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN; Naghski J; Custer CS; Russell RW
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth potential of Clostridium botulinum in fresh mushrooms packaged in semipermeable plastic film.
    Sugiyama H; Yang KH
    Appl Microbiol; 1975 Dec; 30(6):964-9. PubMed ID: 1108793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum.
    Girardin H; Albagnac C; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2002 May; 65(5):806-13. PubMed ID: 12030292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the ability of proteolytic Clostridium botulinum to multiply and produce toxin in fresh Italian pasta.
    Del Torre M; Stecchini ML; Peck MW
    J Food Prot; 1998 Aug; 61(8):988-93. PubMed ID: 9713759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive inhibition between different Clostridium botulinum types and strains.
    Eklund MW; Poysky FT; Peterson ME; Paranjpye RN; Pelroy GA
    J Food Prot; 2004 Dec; 67(12):2682-7. PubMed ID: 15633672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ethanol on the growth of Clostridium botulinum.
    Daifas DP; Smith JP; Blanchfield B; Cadieux B; Sanders G; Austin JW
    J Food Prot; 2003 Apr; 66(4):610-7. PubMed ID: 12696684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxin production by Clostridium botulinum in grass.
    Notermans S; Kozaki S; van Schothorst M
    Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and toxin production by Clostridium botulinum on sliced raw potatoes in a modified atmosphere with and without sulfite.
    Solomon HM; Rhodehamel EJ; Kautter DA
    J Food Prot; 1998 Jan; 61(1):126-8. PubMed ID: 9708268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C.
    Lund BM; Graham AF; George SM
    J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice.
    Stringer SC; Haque N; Peck MW
    Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxin production by Clostridium botulinum in pasteurized milk treated with carbon dioxide.
    Glass KA; Kaufman KM; Smith AL; Johnson EA; Chen JH; Hotchkiss J
    J Food Prot; 1999 Aug; 62(8):872-6. PubMed ID: 10456739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth and germination of proteolytic Clostridium botulinum in vegetable-based media.
    Braconnier A; Broussolle V; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2003 May; 66(5):833-9. PubMed ID: 12747693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined effect of water activity and pH on inhibition of toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes.
    Dodds KL
    Appl Environ Microbiol; 1989 Mar; 55(3):656-60. PubMed ID: 2648990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum.
    Graham AF; Lund BM
    J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High prevalence of Clostridium botulinum in vegetarian sausages.
    Pernu N; Keto-Timonen R; Lindström M; Korkeala H
    Food Microbiol; 2020 Oct; 91():103512. PubMed ID: 32539985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the Botulism Hazard from Vegetables in Modified Atmosphere Packaging.
    Larson AE; Johnson EA; Barmore CR; Hughes MD
    J Food Prot; 1997 Oct; 60(10):1208-1214. PubMed ID: 31207733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.