These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9708841)

  • 1. Sex differences in operant discrimination behaviour in an animal model of attention-deficit hyperactivity disorder.
    Berger DF; Sagvolden T
    Behav Brain Res; 1998 Jul; 94(1):73-82. PubMed ID: 9708841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extinction learning deficit in a rodent model of attention-deficit hyperactivity disorder.
    Brackney RJ; Cheung TH; Herbst K; Hill JC; Sanabria F
    Behav Brain Funct; 2012 Dec; 8():59. PubMed ID: 23237608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder.
    Sagvolden T; Aase H; Zeiner P; Berger D
    Behav Brain Res; 1998 Jul; 94(1):61-71. PubMed ID: 9708840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations.
    Adriani W; Caprioli A; Granstrem O; Carli M; Laviola G
    Neurosci Biobehav Rev; 2003 Nov; 27(7):639-51. PubMed ID: 14624808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD).
    Johansen EB; Sagvolden T; Kvande G
    Behav Brain Res; 2005 Jul; 162(1):47-61. PubMed ID: 15922066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response disinhibition may be explained as an extinction deficit in an animal model of attention-deficit/hyperactivity disorder (ADHD).
    Johansen EB; Sagvolden T
    Behav Brain Res; 2004 Mar; 149(2):183-96. PubMed ID: 15129781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraindividual variability (IIV) in an animal model of ADHD - the Spontaneously Hypertensive Rat.
    Perry GM; Sagvolden T; Faraone SV
    Behav Brain Funct; 2010 Oct; 6():56. PubMed ID: 20925933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 3. Control by reinforcer rate changes and predictability.
    Williams J; Sagvolden G; Taylor E; Sagvolden T
    Behav Brain Res; 2009 Mar; 198(2):291-7. PubMed ID: 18824035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 1. Control by place, timing, and reinforcement rate.
    Williams J; Sagvolden G; Taylor E; Sagvolden T
    Behav Brain Res; 2009 Mar; 198(2):273-82. PubMed ID: 18824036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains.
    Sagvolden T; Pettersen MB; Larsen MC
    Physiol Behav; 1993 Dec; 54(6):1047-55. PubMed ID: 8295939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instrumental conditioning for food reinforcement in the spontaneously hypertensive rat model of attention deficit hyperactivity disorder.
    Rostron CL; Gaeta V; Brace LR; Dommett EJ
    BMC Res Notes; 2017 Oct; 10(1):525. PubMed ID: 29084583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-evaluation of an animal model for ADHD using a free-operant choice task.
    Pardey MC; Homewood J; Taylor A; Cornish JL
    J Neurosci Methods; 2009 Jan; 176(2):166-71. PubMed ID: 18835408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic L-deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder.
    Boix F; Qiao SW; Kolpus T; Sagvolden T
    Behav Brain Res; 1998 Jul; 94(1):153-62. PubMed ID: 9708846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 2. Control by novelty.
    Williams J; Sagvolden G; Taylor E; Sagvolden T
    Behav Brain Res; 2009 Mar; 198(2):283-90. PubMed ID: 18824039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral effects of intra-cranial self-stimulation in an animal model of attention-deficit/hyperactivity disorder (ADHD).
    Johansen EB; Sagvolden T
    Behav Brain Res; 2005 Jul; 162(1):32-46. PubMed ID: 15922065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD).
    Alsop B
    J Neurosci Methods; 2007 May; 162(1-2):42-8. PubMed ID: 17241669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microstructural analysis of schedule-induced polydipsia reveals incentive-induced hyperactivity in an animal model of ADHD.
    Íbias J; Pellón R; Sanabria F
    Behav Brain Res; 2015 Feb; 278():417-23. PubMed ID: 25447297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slower extinction of responses maintained by intra-cranial self-stimulation (ICSS) in an animal model of attention-deficit/hyperactivity disorder (ADHD).
    Johansen EB; Sagvolden T
    Behav Brain Res; 2005 Jul; 162(1):22-31. PubMed ID: 15922064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat.
    Wickens JR; Macfarlane J; Booker C; McNaughton N
    Behav Brain Res; 2004 Jul; 152(2):393-401. PubMed ID: 15196808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-individual variability in genetic and environmental models of attention-deficit/hyperactivity disorder.
    Perry GM; Sagvolden T; Faraone SV
    Am J Med Genet B Neuropsychiatr Genet; 2010 Jul; 153B(5):1094-101. PubMed ID: 20468058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.