These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9708973)
1. Phosphorylation stabilizes the active conformation of rhodopsin. Gibson SK; Parkes JH; Liebman PA Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential. Gibson SK; Parkes JH; Liebman PA Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166 [TBL] [Abstract][Full Text] [Related]
3. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes. Parkes JH; Gibson SK; Liebman PA Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908 [TBL] [Abstract][Full Text] [Related]
4. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation. Mitchell DC; Litman BJ Biochemistry; 1999 Jun; 38(24):7617-23. PubMed ID: 10387000 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin. Dickopf S; Mielke T; Heyn MP Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581 [TBL] [Abstract][Full Text] [Related]
6. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
7. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin. Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059 [TBL] [Abstract][Full Text] [Related]
8. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling. Angel TE; Kraft PC; Dratz EA Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882 [TBL] [Abstract][Full Text] [Related]
9. Effect of phosphorylation on receptor conformation: the metarhodopsin I in equilibrium with metarhodopsin II equilibrium in multiply phosphorylated rhodopsin. Mitchell DC; Kibelbek J; Litman BJ Biochemistry; 1992 Sep; 31(35):8107-11. PubMed ID: 1525152 [TBL] [Abstract][Full Text] [Related]
10. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide. Sato K; Morizumi T; Yamashita T; Shichida Y Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396 [TBL] [Abstract][Full Text] [Related]
11. Surface charge changes upon formation of the signaling state in visual rhodopsin. Möller M; Alexiev U Photochem Photobiol; 2009; 85(2):501-8. PubMed ID: 19222792 [TBL] [Abstract][Full Text] [Related]
12. Function of the farnesyl moiety in visual signalling. McCarthy NE; Akhtar M Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415 [TBL] [Abstract][Full Text] [Related]
13. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Schleicher A; Kühn H; Hofmann KP Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect. Delange F; Merkx M; Bovee-Geurts PH; Pistorius AM; Degrip WJ Eur J Biochem; 1997 Jan; 243(1-2):174-80. PubMed ID: 9030737 [TBL] [Abstract][Full Text] [Related]
15. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction]. Orlov NIa; Fesenko EE Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy. Hoersch D; Otto H; Wallat I; Heyn MP Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin. Gibson SK; Parkes JH; Liebman PA Biochemistry; 2000 May; 39(19):5738-49. PubMed ID: 10801324 [TBL] [Abstract][Full Text] [Related]
18. Influence of pH on the MI-MII equilibrium of rhodopsin in recombinant membranes. Gibson NJ; Brown MF Biochem Biophys Res Commun; 1990 Jun; 169(3):1028-34. PubMed ID: 2363712 [TBL] [Abstract][Full Text] [Related]
19. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis. Gibson NJ; Brown MF Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536 [TBL] [Abstract][Full Text] [Related]
20. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Arnis S; Hofmann KP Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7849-53. PubMed ID: 8356093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]