These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9709004)

  • 41. Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody.
    Zappacosta F; Pessi A; Bianchi E; Venturini S; Sollazzo M; Tramontano A; Marino G; Pucci P
    Protein Sci; 1996 May; 5(5):802-13. PubMed ID: 8732752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differences in the solution structures of the parallel beta-helical pectate lyases as determined by limited proteolysis.
    Hurlbert JC; Preston JF
    Biochim Biophys Acta; 2002 Sep; 1599(1-2):9-20. PubMed ID: 12479401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing the conformational state of a truncated staphylococcal nuclease R using time of flight mass spectrometry with limited proteolysis.
    Yang F; Cheng Y; Peng J; Zhou J; Jing G
    Eur J Biochem; 2001 Aug; 268(15):4227-32. PubMed ID: 11488916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence-ion enhancement of peptides digested with proteinase K.
    Li XL; Yang HJ; Grotemeyer J
    Rapid Commun Mass Spectrom; 1994 Oct; 8(10):833-6. PubMed ID: 8000079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the 3-D structure, dynamics, and stability of bacterial collagenase collagen binding domain (apo- versus holo-) by limited proteolysis MALDI-TOF MS.
    Sides CR; Liyanage R; Lay JO; Philominathan ST; Matsushita O; Sakon J
    J Am Soc Mass Spectrom; 2012 Mar; 23(3):505-19. PubMed ID: 22207568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on aspartase VIII. Protease-mediated activation: comparative survey of protease specificity for activation and peptide cleavage.
    Yumoto N; Mizuta K; Tokushige M; Hayashi R
    Physiol Chem Phys; 1982; 14(4):391-7. PubMed ID: 6764538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mass spectrometry and non-covalent protein-ligand complexes: confirmation of binding sites and changes in tertiary structure.
    Shields SJ; Oyeyemi O; Lightstone FC; Balhorn R
    J Am Soc Mass Spectrom; 2003 May; 14(5):460-70. PubMed ID: 12745215
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformation of aspartate aminotransferase isozymes folding under different conditions probed by limited proteolysis.
    Mattingly JR; Torella C; Iriarte A; Martinez-Carrion M
    J Biol Chem; 1998 Sep; 273(36):23191-202. PubMed ID: 9722549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Folding intermediates of beta-lactamase recognized by GroEL.
    Gervasoni P; Plückthun A
    FEBS Lett; 1997 Jan; 401(2-3):138-42. PubMed ID: 9013874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystallographic analysis and biochemical applications of a novel penicillin-binding protein/β-lactamase homologue from a metagenomic library.
    Ngo TD; Ryu BH; Ju H; Jang EJ; Kim KK; Kim TD
    Acta Crystallogr D Biol Crystallogr; 2014 Sep; 70(Pt 9):2455-66. PubMed ID: 25195758
    [TBL] [Abstract][Full Text] [Related]  

  • 51. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease.
    Keiler KC; Silber KR; Downard KM; Papayannopoulos IA; Biemann K; Sauer RT
    Protein Sci; 1995 Aug; 4(8):1507-15. PubMed ID: 8520476
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preferential sites of proteolytic cleavage of bovine, human and rat thyroglobulin. The use of limited proteolysis to detect solvent-exposed regions of the primary structure.
    Gentile F; Salvatore G
    Eur J Biochem; 1993 Dec; 218(2):603-21. PubMed ID: 8269951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of peptides in aggregates formed during hydrolysis of beta-lactoglobulin B with a Glu and Asp specific microbial protease.
    Otte J; Lomholt SB; Halkier T; Qvist KB
    J Agric Food Chem; 2000 Jun; 48(6):2443-7. PubMed ID: 10888565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal unfolding and proteolytic susceptibility of ribonuclease A.
    Arnold U; Rücknagel KP; Schierhorn A; Ulbrich-Hofmann R
    Eur J Biochem; 1996 May; 237(3):862-9. PubMed ID: 8647135
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteolytic interconversion and N-terminal sequences of the Citrobacter diversus major beta-lactamases.
    Franceschini N; Amicosante G; Perilli M; Maccarrone M; Oratore A; van Beeumen J; Frère JM
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):629-33. PubMed ID: 2039443
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of amino acid insertions on the proteolysis of a staphylococcal protein A derivative in Escherichia coli.
    Yang S; Bergman T; Veide A; Enfors SO
    Eur J Biochem; 1994 Dec; 226(3):847-52. PubMed ID: 7813474
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection.
    Mao W; Xia L; Wang Y; Xie H
    Chem Asian J; 2016 Dec; 11(24):3493-3497. PubMed ID: 27790857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of single point mutations in citrate synthase on binding to GroEL.
    Zahn R; Lindner P; Axmann SE; Plückthun A
    FEBS Lett; 1996 Feb; 380(1-2):152-6. PubMed ID: 8603726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteolytic sensitivity of a recombinant phospholipase D from cabbage: identification of loop regions and conformational changes.
    Younus H; Schöps R; Lerchner A; Rücknagel KP; Schierhorn A; Saleemuddin M; Ulbrich-Hofmann R
    J Protein Chem; 2003 Aug; 22(6):499-508. PubMed ID: 14703982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure formation in short designed peptides probed by proteolytic cleavage.
    Saikumari YK; Ravindra G; Balaram P
    Protein Pept Lett; 2006; 13(5):471-6. PubMed ID: 16800800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.