BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9709475)

  • 1. Bioavailability and speciation of arsenic in carrots grown in contaminated soil.
    Helgesen H; Larsen EH
    Analyst; 1998 May; 123(5):791-6. PubMed ID: 9709475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile.
    Pizarro I; Gómez-Gómez M; León J; Román D; Palacios MA
    Sci Total Environ; 2016 Sep; 565():557-563. PubMed ID: 27196992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.
    Xu JY; Li HB; Liang S; Luo J; Ma LQ
    Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles.
    Pouschat P; Zagury GJ
    Environ Sci Technol; 2006 Jul; 40(13):4317-23. PubMed ID: 16856753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric deposition of trace elements around point sources and human health risk assessment. II. Uptake of arsenic and chromium by vegetables grown near a wood preservation factory.
    Larsen EH; Moseholm L; Nielsen MM
    Sci Total Environ; 1992 Sep; 126(3):263-75. PubMed ID: 1439755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition.
    Balasoiu CF; Zagury GJ; Deschênes L
    Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany.
    Antoniadis V; Shaheen SM; Boersch J; Frohne T; Du Laing G; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):192-200. PubMed ID: 27117508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of arsenate and arsenite species from soils and sediments.
    Georgiadis M; Cai Y; Solo-Gabriele HM
    Environ Pollut; 2006 May; 141(1):22-9. PubMed ID: 16198465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues.
    Zandstra BH; De Kryger TA
    Food Addit Contam; 2007 Jan; 24(1):34-42. PubMed ID: 17164215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An uptake and elimination kinetics approach to assess the bioavailability of chromium, copper, and arsenic to earthworms (Eisenia andrei) in contaminated field soils.
    Kilpi-Koski J; Penttinen OP; Väisänen AO; van Gestel CAM
    Environ Sci Pollut Res Int; 2019 May; 26(15):15095-15104. PubMed ID: 30924042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food safety and bioavailability evaluations of four vegetables grown in the highly arsenic-contaminated soils on the Guandu Plain of northern Taiwan.
    Su SW; Tsui CC; Lai HY; Chen ZS
    Int J Environ Res Public Health; 2014 Apr; 11(4):4091-107. PubMed ID: 24736690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies.
    Paltseva A; Cheng Z; Deeb M; Groffman PM; Shaw RK; Maddaloni M
    Sci Total Environ; 2018 Nov; 640-641():273-283. PubMed ID: 29859443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption.
    Smith E; Naidu R; Alston AM
    J Environ Qual; 2002; 31(2):557-63. PubMed ID: 11931447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Variations of arsenic species in the solution of arsenic-contaminated paddy soil under flooding and at different temperatures].
    Wang Z; Cui JH; Chen Z; Lu XJ; Liu WJ
    Ying Yong Sheng Tai Xue Bao; 2013 May; 24(5):1415-22. PubMed ID: 24015564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic Speciation and Availability in Orchard Soils Historically Contaminated with Lead Arsenate.
    Gamble AV; Givens AK; Sparks DL
    J Environ Qual; 2018 Jan; 47(1):121-128. PubMed ID: 29415098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.