These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 9709475)
1. Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Helgesen H; Larsen EH Analyst; 1998 May; 123(5):791-6. PubMed ID: 9709475 [TBL] [Abstract][Full Text] [Related]
2. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile. Pizarro I; Gómez-Gómez M; León J; Román D; Palacios MA Sci Total Environ; 2016 Sep; 565():557-563. PubMed ID: 27196992 [TBL] [Abstract][Full Text] [Related]
3. Arsenic biotransformation in earthworms from contaminated soils. Button M; Jenkin GR; Harrington CF; Watts MJ J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532 [TBL] [Abstract][Full Text] [Related]
4. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Xu JY; Li HB; Liang S; Luo J; Ma LQ Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044 [TBL] [Abstract][Full Text] [Related]
5. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
6. In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Pouschat P; Zagury GJ Environ Sci Technol; 2006 Jul; 40(13):4317-23. PubMed ID: 16856753 [TBL] [Abstract][Full Text] [Related]
7. Atmospheric deposition of trace elements around point sources and human health risk assessment. II. Uptake of arsenic and chromium by vegetables grown near a wood preservation factory. Larsen EH; Moseholm L; Nielsen MM Sci Total Environ; 1992 Sep; 126(3):263-75. PubMed ID: 1439755 [TBL] [Abstract][Full Text] [Related]
8. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. Balasoiu CF; Zagury GJ; Deschênes L Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270 [TBL] [Abstract][Full Text] [Related]
9. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Antoniadis V; Shaheen SM; Boersch J; Frohne T; Du Laing G; Rinklebe J J Environ Manage; 2017 Jan; 186(Pt 2):192-200. PubMed ID: 27117508 [TBL] [Abstract][Full Text] [Related]
10. Extraction of arsenate and arsenite species from soils and sediments. Georgiadis M; Cai Y; Solo-Gabriele HM Environ Pollut; 2006 May; 141(1):22-9. PubMed ID: 16198465 [TBL] [Abstract][Full Text] [Related]
11. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
12. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues. Zandstra BH; De Kryger TA Food Addit Contam; 2007 Jan; 24(1):34-42. PubMed ID: 17164215 [TBL] [Abstract][Full Text] [Related]
13. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles. Zagury GJ; Dobran S; Estrela S; Deschênes L Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683 [TBL] [Abstract][Full Text] [Related]
14. An uptake and elimination kinetics approach to assess the bioavailability of chromium, copper, and arsenic to earthworms (Eisenia andrei) in contaminated field soils. Kilpi-Koski J; Penttinen OP; Väisänen AO; van Gestel CAM Environ Sci Pollut Res Int; 2019 May; 26(15):15095-15104. PubMed ID: 30924042 [TBL] [Abstract][Full Text] [Related]
15. Food safety and bioavailability evaluations of four vegetables grown in the highly arsenic-contaminated soils on the Guandu Plain of northern Taiwan. Su SW; Tsui CC; Lai HY; Chen ZS Int J Environ Res Public Health; 2014 Apr; 11(4):4091-107. PubMed ID: 24736690 [TBL] [Abstract][Full Text] [Related]
16. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
17. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Paltseva A; Cheng Z; Deeb M; Groffman PM; Shaw RK; Maddaloni M Sci Total Environ; 2018 Nov; 640-641():273-283. PubMed ID: 29859443 [TBL] [Abstract][Full Text] [Related]
18. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. Smith E; Naidu R; Alston AM J Environ Qual; 2002; 31(2):557-63. PubMed ID: 11931447 [TBL] [Abstract][Full Text] [Related]
19. [Variations of arsenic species in the solution of arsenic-contaminated paddy soil under flooding and at different temperatures]. Wang Z; Cui JH; Chen Z; Lu XJ; Liu WJ Ying Yong Sheng Tai Xue Bao; 2013 May; 24(5):1415-22. PubMed ID: 24015564 [TBL] [Abstract][Full Text] [Related]
20. Arsenic Speciation and Availability in Orchard Soils Historically Contaminated with Lead Arsenate. Gamble AV; Givens AK; Sparks DL J Environ Qual; 2018 Jan; 47(1):121-128. PubMed ID: 29415098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]