These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9710244)

  • 1. The effect of chemical oxidation on the fluorescence of the LH1 (B880) complex from the purple bacterium Rhodobium marinum.
    Law CJ; Cogdell RJ
    FEBS Lett; 1998 Jul; 432(1-2):27-30. PubMed ID: 9710244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and purification of the reaction center (RC) and the core (RC-LH1) complex from Rhodobium marinum: the LH1 ring of the detergent-solubilized core complex contains 32 bacteriochlorophylls.
    Qian P; Yagura T; Koyama Y; Cogdell RJ
    Plant Cell Physiol; 2000 Dec; 41(12):1347-53. PubMed ID: 11134420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll.
    Fiedor L; Leupold D; Teuchner K; Voigt B; Hunter CN; Scherz A; Scheer H
    Biochemistry; 2001 Mar; 40(12):3737-47. PubMed ID: 11297443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm.
    Permentier HP; Neerken S; Overmann J; Amesz J
    Biochemistry; 2001 May; 40(18):5573-8. PubMed ID: 11331023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria.
    Lapouge K; Näveke A; Gall A; Ivancich A; Seguin J; Scheer H; Sturgis JN; Mattioli TA; Robert B
    Biochemistry; 1999 Aug; 38(34):11115-21. PubMed ID: 10460167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1-RC Core Complex of a Bacteriochlorophyll b Containing Purple Photosynthetic Bacterium Blastochloris viridis.
    Magdaong NC; Niedzwiedzki DM; Goodson C; Blankenship RE
    J Phys Chem B; 2016 Jun; 120(23):5159-71. PubMed ID: 27218197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring electron spin-spin interactions of paramagnetic iron and radical cations of bacteriochlorophyll from oxidized LH1 in the presence of electron transfer in the frozen state.
    Hasjim PL; Ponomarenko N; Weber S; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14194-9. PubMed ID: 20151665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic charge controls the lowest LH1 Q
    Kimura Y; Nojima S; Nakata K; Yamashita T; Wang XP; Takenaka S; Akimoto S; Kobayashi M; Madigan MT; Wang-Otomo ZY; Yu LJ
    Biochim Biophys Acta Bioenerg; 2021 Nov; 1862(11):148473. PubMed ID: 34310933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchanging cofactors in the core antennae from purple bacteria: structure and properties of Zn-bacteriopheophytin-containing LH1.
    Lapouge K; Näveke A; Robert B; Scheer H; Sturgis JN
    Biochemistry; 2000 Feb; 39(5):1091-9. PubMed ID: 10653655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides.
    Olsen JD; Sturgis JN; Westerhuis WH; Fowler GJ; Hunter CN; Robert B
    Biochemistry; 1997 Oct; 36(41):12625-32. PubMed ID: 9376369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of bacteriochlorophyll in stabilization of the structure of the near-central and peripheral light-harvesting complexes from purple photosynthetic bacteria].
    Solov'ev AA; Erokhin IuE
    Mikrobiologiia; 2013; 82(5):542-51. PubMed ID: 25509392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopy and structure of bacteriochlorophyll dimers. I. Structural consequences of nonconservative circular dichroism spectra.
    Koolhaas MH; van der Zwan G; van Mourik F; van Grondelle R
    Biophys J; 1997 Apr; 72(4):1828-41. PubMed ID: 9083687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    J Phys Chem B; 2008 Aug; 112(31):9467-75. PubMed ID: 18613723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations.
    Ketelaars M; van Oijen AM; Matsushita M; Köhler J; Schmidt J; Aartsma TJ
    Biophys J; 2001 Mar; 80(3):1591-603. PubMed ID: 11222320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular dichroism and resonance Raman spectroscopies of bacteriochlorophyll b-containing LH1-RC complexes.
    Kimura Y; Yamashita T; Seto R; Imanishi M; Honda M; Nakagawa S; Saga Y; Takenaka S; Yu LJ; Madigan MT; Wang-Otomo ZY
    Photosynth Res; 2021 May; 148(1-2):77-86. PubMed ID: 33834357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria.
    Visschers RW; Chang MC; van Mourik F; Parkes-Loach PS; Heller BA; Loach PA; van Grondelle R
    Biochemistry; 1991 Jun; 30(23):5734-42. PubMed ID: 1904275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototrapping of doubly reduced monomeric bacteriochlorophyll in the photoreaction center of Ectothiorhodospira sp.
    Mar T; Picorel R; Gingras G
    Biochemistry; 1993 Feb; 32(6):1466-70. PubMed ID: 8381662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].
    Biofizika; 2005; 50(4):668-75. PubMed ID: 16212058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1.
    Strümpfer J; Schulten K
    J Chem Phys; 2012 Aug; 137(6):065101. PubMed ID: 22897312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.