These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9710333)

  • 1. A study of the acoustic reflex using fast-rate otoacoustic emissions.
    Norman M; Thornton AR; Slaven A
    Br J Audiol; 1998 Jun; 32(3):139-52. PubMed ID: 9710333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Click- and tone-burst-evoked otoacoustic emissions in normally hearing ears and in ears with high-frequency sensorineural hearing loss.
    Hauser R; Probst R; Löhle E
    Eur Arch Otorhinolaryngol; 1991; 248(6):345-52. PubMed ID: 1930984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables.
    Veuillet E; Collet L; Duclaux R
    J Neurophysiol; 1991 Mar; 65(3):724-35. PubMed ID: 2051201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swept-tone transient-evoked otoacoustic emissions.
    Bennett CL; Özdamar Ö
    J Acoust Soc Am; 2010 Oct; 128(4):1833-44. PubMed ID: 20968356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirp-evoked otoacoustic emissions in children.
    Jedrzejczak WW; Kochanek K; Sliwa L; Pilka E; Piotrowska A; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):101-6. PubMed ID: 23116905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between ear and sex differences and stimulus rate.
    Ismail H; Thornton AR
    Hear Res; 2003 May; 179(1-2):97-103. PubMed ID: 12742242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation into the relationship between input-output nonlinearities and rate-induced nonlinearities of click-evoked otoacoustic emissions recorded using maximum length sequences.
    Lineton B; Thornton AR; Baker VJ
    Hear Res; 2006 Sep; 219(1-2):24-35. PubMed ID: 16839721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of contralateral acoustic stimulation on otoacoustic emissions following vestibular neurectomy.
    Williams EA; Brookes GB; Prasher DK
    Scand Audiol; 1993; 22(3):197-203. PubMed ID: 8210961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otoacoustic emissions evoked by 0.5 kHz tone bursts.
    Jedrzejczak WW; Lorens A; Piotrowska A; Kochanek K; Skarzynski H
    J Acoust Soc Am; 2009 May; 125(5):3158-65. PubMed ID: 19425658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Vinck BM; Van Cauwenberge PB; Corthals P; De Vel E
    Audiology; 1998; 37(6):315-34. PubMed ID: 9888189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products.
    Plinkert PK; Bootz F; Vossieck T
    Eur Arch Otorhinolaryngol; 1994; 251(2):95-9. PubMed ID: 8024768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-frequency distributions of click-evoked otoacoustic emissions.
    Tognola G; Grandori F; Ravazzani P
    Hear Res; 1997 Apr; 106(1-2):112-22. PubMed ID: 9112111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volterra Slice otoacoustic emissions recorded using maximum length sequences from patients with sensorineural hearing loss.
    de Boer J; Thornton AR
    Hear Res; 2006 Sep; 219(1-2):121-36. PubMed ID: 16887305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices.
    Jedrzejczak WW; Piotrowska A; Kochanek K; Sliwa L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Oct; 77(10):1724-8. PubMed ID: 23972827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits.
    Whitehead ML; Martin GK; Lonsbury-Martin BL
    Hear Res; 1991 Jan; 51(1):55-72. PubMed ID: 2013546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medial olivocochlear reflex effects on amplitude growth functions of long- and short-latency components of click-evoked otoacoustic emissions in humans.
    Goodman SS; Boothalingam S; Lichtenhan JT
    J Neurophysiol; 2021 May; 125(5):1938-1953. PubMed ID: 33625926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.